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ABSTRACT

The method of matched asymptotic expansions is introduced as a systematic
approach to the problem of analytically describing flight trajectories. Both new and
previously known solutions in flight mechanics are produced in an unified procedure
that is capable of estimating their region of validity, extending the solution to higher
accuracy, and combining the solutions to obtain expressions valid over several reg-
ions of interest.

Specifically, all the first approximations to the flight dynamic equations are
idertified and their region of validity is established. Asymptotic expansions for the
solutions of the dynamic equations are produced for a number of regions. The
analyses of Sanger(g’ 104), Allen and Eggers(s), Chapman(14), Lees(7), Shen(zs)
are all shown to be systematic approximations within this context. The extent to
which Loh's (2,35) analysis can be considered systematic is demonstrated and its
region of validity is identified, A procedure for extending these solutions to higher
order and greater accuracy is illustrated. Two of the expansions are matched to
produce a composite solution valid for a currently interesting class of lifting trajec-
tories.

Analytical investigation of some optimal flight trajectories is accomplished.
Cbservations are made concerning the structure of optimal plane change, minimum
velocity lost, maximum range, and minimum heating trajectories. The advantages
of uniformly valid analytical solutions for guidance applications are ennumerated

and possible implementations in guidance schemes are suggested.
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LIST OF SYMBOLS

General Notation

A prime will be used to indicate the same variable ;scaled by a dimensional
or nondimensional quantity, i.e., vZ = v2 /goro, vZ = GVZ, etc. The order in €
of a variable will be indicated by a capital "O", i.e., vz' is order € is written

vZ = 0(€). A series expansion in €for a variable will have the form vl(t) =

et vl(n) (t) where the superscript indicates the order of the expansion variable

and the subscript indicates that it is the expansion for region one.

A vector will be an underlined lower case letter, i.e., v. The magnitude
of the vector will be the lower case letter withoutan underline, i.e., v is the magni--

tude of v. A matrix will be a capital letter, i.e., @, FF. The transpose of a vector

of matrix is indicated by a superscript T, i.e., @T. The derivative of a variable

with respect to an independent variable, not necessarily time, is indicated with a
dot, i.e., X . The derivative of a vector function with respect to a vector, i.e.,
af /az.,. will be considered a matrix or a second-order tensor. The second deriv-
ative of a vector function with respect to a vector, i.e. aZ_f /9x 85, will be consid-
ered a third-order tensor, etc. The statistical expectation of a random variable

will be indicated with a capital £, i.e., £fw(t)] = 0.

English Symbols

a semi-major axis

A reference area

AA the set of all possible aerodynamic accelerations

AT the set of all possible thrust accelerations

A the set of all possible thrust and aerodynamic accelerations

c speed of sound

CL lift coefficient

CD drag coefficient

CG generalized aerodynamic coefficient
D drag

e eccentricity



English Symbols {(cont. )

£0) an arbitrary vector function

gl) an arbitrary vector function

4 acceleration of gravity

G universal gravitational constant

G generalized aerodynamic effect, either load factor or heating
h altitude (or height) above a reference radius
il nondimensional angular momentum

H Hamiltonian

JZ second harmonic coefficient

k Boltzman constant

£ a reference length

L planetary latitude

m vehicle mass

m mean molecular weight of the atmospheric gas
M mass of the planet

M mach number

n load factor

P atmospheric pressure

q heating rate

r a position vector from the planet's center

R atmospheric gas constant

R universal gas constant

Re Reynolds number

t time

T atmospheric temperature

T thrust vector

u a general control vector

v vehicle velocity vector

Yw wind velocity vector

xii




English Symbols (cont.)

v gravitational potential

X a general state vector

Greek Symbols

o angle of attack
B inverse atmospheric scale height

flight path angle

Y ratio of specific heats
5 variation or perturbation of the following quantity
€ a general small parameter

€€, ratio of atmospheric scale height to planetary radius

€, ratio of orbital period to rotational period

6 range angle

N adjoint variables, costate variables, or Lagrange multipliers
" viscosity coefficient

p atmospheric density

ol roll angle - measured about the velocity vector

q)(tl,tz) a state transition matrix for a linear system from t:Z to tl
Q the planet's rotation rate
Superscripts
T vector or matrix transpose
-1 matrix inverse

! the same variable scaled by a dimensional or nondimensional quantity

() the order of an expansion variable
Subscripts
o constant value
o initial value
f final value
L related to lift
. D related to drag
] Q related to heating
@ earth value

xiii



CHAPTER

INTRODUCTION

1.1 Scope of Thesis

The method of matched asymptotic expansions has recently emerged as a
highly systematic means of treating nonlinear prblems in which a small parameter
appears. It has been extensively used in the field of fluid mechanics(l’ 4,12, 57)a,nd
recently in a number of problems in celestial mechanics. (64, 66, 67,70) This thesis
is the natural extension of the previous uses of the method into the area of entry

dynamics and hypervelocity flight mechanics.

1.2 Analytical Flight Mechanics

In analytical flight mechanics, as in many other problems, one is faced with
a set of dynamic equations much too complicated to solve in any generalized sense.
The central problem then is one of approximating, or modeling, the more complex
system in terms of simpler systems. Hopefully, the simpler system gives insight
into the dynamics of the more complex system over some limited region of
operation. There are many fine examples of this type of endeavor in both classical

(37, 47) and more recently in the dynamics of atmospheric entry or
(2,7,8,9,10, 11,14, 33, 38)

flight dynamics
hypervelocity flight.
A common characteristic of all such analyses is that they have a limited
range of validity. This has usually been carefully pointed out by the analyst.
(7,8,9,10,11, 33, 38) A further complication is that it is generally not obvious how
the original work is extended to some arbitrary degree of accuracy. Also transitioning
from one region of flight, where a particular analysis is valid, to another region where
another analysis is valid is awkward if at all possible. All of these problems have
simple answers, if not always solutions, in the context of the method of matched

asymptotic expansions.

1.3 The Method of Matched Asymptotic Expansions

The most naive form of the method of matched asymptotic expansions will
serve the purposes of this thesis. For an elaborate and enlighting treatment, the

(1)

reader is referred to Van Dyke The approach that will be taken here is to seek
a valid first approximation to the dynamic equations of flight. Small neglected terms
are then assumed to only cause linear perturbations in a solution to the valid first
approximation. So that once the lowest order problem, or first approximation, has

been determined, all succeeding corrections are simply linear perturbation problems.



The solution can then, in principle, be extended to any order to include all small
effects. The first-order solution and the solution to all the associated linear per-
turbation problems is called an expansion for the solution of the complete problem.

Some care must be taken in determining the valid first approximation. This
approximation is basically different depending on the values of the problem variables
that appear. All such first approximations may be systematically ennumerated by
considering all possible values of the problem's variables measured in powers of
the problem's small parameters. Terms that may be neglected will then appear
multiplied by some power of the small parameter. The first, or lowest order,
approximation for a particular range of values of the variables is obtained by sim-
ply retaining non-negligible terms. The neglected terms are then included as linear
perturbations to the lowest order solution. So, small parameters form a scale
factor that allows division of the variable, or state, space of the dynamic system
into different regions of behavior in which different expansions are valid. After
two expansions, valid in two neighboring regimes, have been obtained they may be
combined by simply requiring that they match smoothly in the region of their com-
mon boundary.

The attempt will be to place previous work in flight mechanics in this frame-
work of systematic approximation. This will allow a careful delineation of the
range of validity and accuracy of existing solutions. It will also offer a straightfor-
ward method of improving the solutions by extending them to higher order. Solutions
uniformly valid over a number of regions,suitable for guidance applications,will be
produced by matching the expansions. Finally, the difficult task of analytically
modeling the optimal trajectory problems will be accomplished by simply retaining
only the lowest order problem in which the control appears. A tracticable analyti-
cal problem will often be produced. Thus, many interesting results will be pro-
duced with a straight-forward application of a well established perturbation technique

in an area in which analytical progress in the past has been difficult.

1.4 The Flight Environment

This thesis will deal with the analytical description of flight paths for a
vehicle under the influence of gravity, acceleration, aerodynamic forces and thrust,
constrained by limits on gas dynamic heating and vehicle specific force. Prior to
initiating this analysis, a brief description of the flight environment is in order.

1.4.1 The Planetary Atmospheres

The atmosphere is considered to be a multicompouent gas ot relative uniform
composition over the altitudes of interest in flight dynamics. Its motion is predomi-
nantly that of rotation with the planet with a small superimposed horizontal wind
structure. Its interaction with the planet's gravitational field is conveniently des-

cribed in terms of a momentum or force balance in the vertical direction (where the

wind components are negligible)




- (1.4.1-1)
¥ o<

p and p are the atmospheric pressure and density and g is the acceleration of
gravity in the planet's rotating coordinate system.

The pressure and density are conveniently related to atmospheric tempera-
ture, T, by the equation of state of a relatively low density gas

[3 ;
P =T (1.4.1-2)

where R is the universal gas constant and m is the molecular weight of the
uniform gas. The temperature has small but important variation with both position
and altitude; similarly g varies with r. The neglect of these variations for the

moment allows Egs. (1.4.1-1) and (1. 4. 1-2) to be combined to give an expression
for p orp as a function of height.

"&ok
P"?.c_, (1.4.1-3)

or _g.k
¢ (. < (1.4.1-4)

where h is altitude above the surface of the planet and Bo is the reciprocal

atmospheric scale height defined as

,g.,v'w"s. (1.4.1-5)

&%

It is observed that the ratio of atmospheric scale height to planetary radius is a
small number for all known planetary atmospheres. (See Table I,) This implies
that p and p vary many orders of magnitude over a height small in comparison with
the planetary radius. The atmosphere is thus a relatively thin shell surrounding
the planet. The ratio of atmospheric scale height to planetary radius is a small
parameter that will be an important scaling factor in the flight dynamic problem.

For convenience it will be hereafter referred to as € (or in Chap.IV as € 1).



£ = — (1.4.1-6)

For a more adequate treatment of planetary atmospheres the reader is
referred to Appendix E and References (16, 83).
The fundamental physical significance of a small € may be obtained by a

slight rearrangement of its definition

| R Ve kT
& = = o B — -
m 3.’0 Ms.ﬁ (1-4.1-7

where k is the Boltzmann constant and m is the mass of a typical gas mole-
cule. The quantity kT0 represents the thermal energy of a molecule while mg T
is the energy required for a molecule at the planet's radius to escape the planet's
gravitational field. It is therefore necessary for the retention of the atmosphere,

%
that € be small.

1.4.2 The Gravitational Field

A planet's gravitational field in a rotating coordinate system fixed to the
planet is adequately described by the negative gradient of a potential, expressed in

terms of spherical harmonics and corrected for planet's rotation, as

= - 3Y (1.4.2-1)
§ = )!

where g is the gravitational acceleration vector, V the potential field, G
the universal gravitional constant, M the mass of the planet, r a position
vector, r, the equatorial radius, L the planetary latitude, Q the planet's
rotation rate and Iy the second-harmonic coefficient (see Appendix D).
Normally, it will be necessary to retain more than the firsttermin this-series, the

spherically symmetric inverse r field, but usually no more than the second term.

%
This interesting observation was pointed out to the author by Prof. A.E. Bryson.




This is because atmospheric flight occurs at altitudes small in comparison to the
planetary radius where the second term is not necessarily negligible. Also, the
planetary oblateness causes a warping of the thin atmospheric shell that is of the
same order of magnitude as the thickness of the atmosphere. This implies that the
major contribution to variations of atmospheric properties with r is due to the
planetary oblateness.

1.4.3 Aerodynamic Forces

By convention, aerodynamic forces are resolved into two components, drag

and lift, along and normal to an air mass referenced velocity vector. They are

expressed in terms of nondimensional coefficients, CD, and CL’ as,
Colv pN® . Cef oWt
D= “¥{ L= "% ¢ (1. 4.3-1)

where D and L are drag and lift, A is some suitable reference area, and v
is the vehicle velocity referenced to the air mass. CL and CD are functions of the

Mach number, M, and Reynolds number, Re,

M *‘_{' (1.4.3-2)

f o) (1.4.3-3)

where ¢ is the speed of sound in the atmospheric gas, p is the viscosity
coefficient, § is some arbitrary reference length. The speed of sound is relatedto

previously defined quantities as

¢ = VIRT (1.4.3-4)

where Y is the ratio of specific heats and R is the gas constant of the atmos-
pheric gas, where R o R /m.

Basically, the Mach number dependence of the aerodynamic coefficient is



related to compressibility and the Reynolds number dependence is related to vis-
cosity. The functional dependency of CL and CD on M and Re differs markedly

depending ou the gas dynamic regimes in which flight is being conducted. A des-
cription of these regimes follows.

1.4.4 Gas Dynamic Regimes

A vehicle encountering a planetary atmosphere will pass through several gas
dynamic regimes depending predominately on the ratio of the vehicle velocity, v, to
the speed of sound, ¢ (approximately the mean "thermal" velocity of the gas mole-

cules). This ratio, the Mach number, may be written as

M- N (1.4.4-1)
V¥RTeo
where Y is the ratio of specific heats for the atmospheric gas. This may be

rewritten in terms of the inverse atmospheric scale height and planetary radius as

L (1.4.4-2)
- N V_‘_
Vha, (e

If one observes that the quantity\/-r_ogo— is orbital velocity and y is of order one for
all gases, then Eq. (1.4.4-2) indicates that the Mach number is high for vehicles
with velocities the order of orbital velocity in any planetary atmosphere. When the
ratio of velocity to orbital velocity is of order € ¢, the Mach numbler is of order one,

and when this ratio is of order € , the Mach number is of order € 2,

It is well known that there are fundamentally different gas dynamic regimes

associated with high, intermediate, and low Mach numbers. It will later be shown that

the dynamic behavior of the flight vehicle divides into three analogous regimes, also
dependent on the value of the Mach number.

A cursory description of the gas
dynamic regimes follows.

For an adequate treatment of the hypersonic flow regime,

with which this thesis is mainly concerned, the reader is referred to References

(49, 95, 96).




(1) Free Molecular Flow Regime *

At appreciable distances from the planet's surfaceyand therefore
at very low densities, the vehicle's encounters with gas molecules
and atoms are relatively infrequent. The molecules are either reflected
or accommodated by the vehicle with a resultant exchange of momentum.
Then gas particles do not encounter other gas particles at distances of
the order of the vehicle's dimension as their mean free path is long.
The vehicle thus continuously meets an undisturbed stream of molecules
with mean velocity equal to the vehicle velocity relative to the atmosphere.
The aerodynamic force, due to the momentum exchange with the mole-
cular stream, is relatively smali because of the low encounter rate. But
they are large enough, over an appreciable period of time,to cause orbital
decay.

(2) Continuum Hypersonic Flow Regime

As the density increases, molecules reflected and emitted
from the surface of the vehicle encounter other molecules at distances
relatively close to the vehicle. A rather low velocity and consequently,
high density cloud of molecules forms on the front side of the vehicle.
There is an appreciable momentum transfer to the vehicle that is basic-
ally due to the increase in number density of the flow. In both the free
molecular flow and the hypersonic flow regimes the aerodynamic forces

on the vehicle are dominantly functions of the momentum transport of

the free stream, pvz. The aercdynamic coefficients CL and CD’ defined
as
0
— -
G 8 oyt Co T Rewt (1.4.4-3)
3 2
vary relatively little with Mach number and Reynolds number.
(3) Supersonic, Transonic and Subsonic Flow Regime

As the vehicle loses kinetic energy, and thus velocity due to
aerodynamic drag, the velocity of the vehicle becomes of the same
order as the mean thermal speed of the gas molecules. In this veloc-
ity range the aerodynamic forces are sensitive to the type of wave
pattern being caused by the reflected molecules in the undisturbed
stream. Thus CL and CD are very sensitive to the vehicle speed rela-

tive to the air mass,or the Mach number. A vehicle predominantly

#It should be observed that free molecular flow is associated with
long mean free paths and not necessarily with any particular velocity regime.

-7 -




designed for hypersonic flow, where blunt vehicles are of no particular

disadvantage, encounters a particular high wave drag.

(4) Constaut Density Flow Regime

When the velocity of the vehicle becomes slow, relative to the
thermal speed of the molecules, disturbances are propagated upstream
at velocities large in comparison to the velocity of the vehicle. The
gas then behaves as though it was a constant density fluid,so C; and
CD are not M dependent, Drag due to viscosity and separation effects
are usually large for hypersonically designed vehicles with a blunt rear
end. Further, lift-drag ratios are low because of the usual low-aspect-
ratio design of the vehicle. These considerations take on considerable

importance if the vehicle is to be landed.

1.4.5 Aerodynamic and Thrust Load Factor

While a vehicle is in free fall under the influence of only gravity there is no
acceleration sensed by the pilot. When the vehicle is subjected to either aerodyna=~
mic or thrusting acceleration the pilot is accelerated proportionately. To preclude
excessive loads on the pilots and for equipment in a spacecraft, entry trajectories
must be constrained to keep this combined aerodynamic and thrust acceleration
within certain limits.

For the equipment there is usually some design load factor that must not be
exceeded. For a human pilot, there is a more complex limitation. Depending on
his orientation, his physical condition, and the task that he has to perform, he can
generally accept a2 given loading for a specified time. The higher the loading the
shorter is the duration of time it is acceptable. However, in the present analysis,
it will normally be assumed,for analytical convenience,that the trajectory is cons-

trained to keep the load factor below a fixed limit.

1.4.6 Aerodynamic Heating

A vehicle moving at high velocities relative to a gas will experience appreci-
able transfer of the kinetic energy of the gas molecules to the vehicle. Fortunately,
there are a number of mechanisms that preclude the complete transfer of all the
energy of the gas stream to the vehicle. Most of the incoming molecules encounter
other molecules that are reflected or emitted from the vehicle. These form an
intensely dense layer of gas molecules with low mean velocity relative to the
vehicle (a "gas cap" in back of a nearly normal shock). The molecules in the gas
cap have high thermal velocity, as energy is initially conserved. Energy is dissi-
pated in this gas cap by a number of means. The gas molecules, undergo numer-
ous and violent collisions with other molecules. This excites internal energy modes
to the point of disasociating and ionizing the gas (breaking the gas molecules into its

constituent atoms and stripping the electrons from the remaining atoms). The hot




gas emits photon energy (radiation), unfortunately nearly half of it toward the vehi-
cle, but the other half into free space. Finally, there is a mean flow of the gas in
the gas cap around the vehicle and into a wake. This transports the energy imbed-
ded in the heavily excited gas away from the vehicle.

The methods of protecting the vehicle from that portion of the energy that
does eventually reach it may be divided into three categories:

(1) Ablation

The exterior of the vehicle that is subjected to the intense heat is
covered with an expendable coat of material that either melts or sublimes,
absorbing the energy input from the gas, and simultaneously dumping the
hot products into the wake.

(2) Reradiation

The exterior of the vehicle is designed to accept some rather
high temperature where the energy input can be reradiated into free space.

(3) Heat Sink

The vehicle is designed to accept the energy input which it might
attempt to store for a short period or transfer to the wake by dumping
coolant,

A given vehicle usually uses all three methods to some extent. But depend-
ing on whether it is dominantly reradiative or ablative cooled the trajectory must
be designed to either not exceed some heating rate associated with the vehicle's
allowable surface temperature or to not exceed some maximum allowable total heat.

For the purpose of estimating energy input to a vehicle, in convective and
radiative forms, one can use empirical relations of the following form (See
Appendix E})

[ N l‘
q=Cet'm } (1.4. 6-1)

where qis a heating rate and CQ is a geometry dependent heating coefficient.
The exponents (i and j) are functions of the gas and unfortunately somewhat sensitive
to the particular empirical investigation. For analytical purposes here, the exact

values of the exponents will be unimportant.
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CHAPTER II

THE DYNAMICS OF TWO-DIMENSIONAL NONTHRUSTING F LIGHT

2.1 Introduction

It is the objective of the present investigation to study the dynamics of flight
in a real rotating atmosphere surrounding an oblate planet. To preclude overbear-
ing complexity from the start, it will be convenient to consider a problem commonly
treated in the literature of entry dynamics or hypervelocity flight mechanics: Non-
thrusting two-dimensional flight in a nonrotating atmosphere surrounding a spheric-
ally symmetric planet. This analysis will produce the same result as the more
complex problem to lowest and sometimes to next order. Some efforts will be
made to pursue higher-order solutions but only to the extent that they will be unef-
fected by the addition of oblateness and rotating atmosphere effects. The justifica-
tion for this simple approach will follow in Chapter IV,

In the analysis of the two-dimensional problem, the technique will be to
identify the lowest-order problems that describe different phases of a flight trajec-
tory. These lowest order problems will be descriptively called regimes of flight.
These regimes will be first produced in an ad hoc manner,to both develop solutions
that will later be used,and to give insight into a systematic procedure for identify-
ing all such regimes.

Two techniques of combining expansions will be given. One is an intuitive
method that comes from considerable familiarity with the expansions. It basically
involves finding a solution that reduces to the proper lowest order form in a number
of regimes. The other method is analytically straightforward and involves match-

ing expansions. It will be treated in Chapter III.

2.2 The Dynamical Equations for Two Dimensional Nonthrusting Flight

The dynamical equations,which describe two dimensional nonthrusting flight,
through a nonrotating atmosphere, surrounding a spherically symmetric planet, can

be written in nondimensional form as follows:

dv _ _ co tNT L. 2. 2-1
F " T ¢ Qe S (e.2-1)
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where

The following dimensional and nondimensional quantities have been used:

N'"_! = C: L
v T E
40 N cos¥
At T 4w
dh . oY

af 4

n 1w\

&

o
|
p-

*
1]
r~~
N I":
g
(1

*l

Nt _ c”,‘(_\__

AN

TS

(2.2-2)

(2. 2-3)

(2. 2-4)

(2. 2-5)

velocity magnitude/reference orbital

velocity.

time /orbital period

height above reference radius /reference

radius

reference radius
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L3

‘_S_' = . - gravitational acceleration /gravitational
& (14w} acceleration
5’ = e - inverse scale height
kT
P = ‘_3;_: - 1inverse scale height /reference inverse
O scale height
& = L - reference scale height /reference radius
b ,5.' f.' (a small quantity)

e
]

nondimensional density

-~

T&
»| ,;J

-

pressure /wing loading

—B
1}
a3l

The other quantities are defined in Fig. (2. 2-1) and in the List of Symbols.

The first two equations are obtained from an acceleration and force balance
along and normal to the flight path. The second two equations are kinematic rela-
tion expressing altitude and range rate in terms of velocity and flight path angle.
The final equation is the hydrostatic equation relating pressurevariations with alti-

tude in the atmosphere.

Pressure and density are related by the equation of state for a low density
gas.

=g kT

(2.2-6)

or in nondimensional form

—6
"

(2.2-7)

© |~
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velocity vector - v'

reference direction

range angle - 6

v - flight path angle

-h' - height above reference radius

J

:_\ rb -reference radius

Fig 2,2-1 Geometry of Two Dimensional Flight
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As time only appears in the equations in the form of derivatives, it may be
conveniently eliminated by dividing Eqs. (2. 2-1-3) by Eq. (2.2-4). This gives a new
set of dynamic equations in the independent variable h and dependent variables 8,

vZ, p, Y as follows:

v N = .
:\I!- = "Cb‘z oy (emyt (2,2-8)
deos¥ _ - Y 2 S N
-‘%: = '\ic"s{_ (\i\r\ (\*k\"ﬂ'"\ tos¥

(2. 2-9)
do _ coby

an 1+ h (2.2-10)
A S
an 0w\

(2. 2-11)

The final equation, Eq. (2.2-11), is strictly not a dynamic equation by sim-
ply a differential equation specifying the variation of p with h. By keeping the rela-

tion in this form, it will be possible to obtain results for an atmosphere of arbitrary

temperature or variation with h.

2.3 Scaling the Dynamical Equations

A formalism that is essential to the success of the perturbation method to
be applied here is the proper scaling of the variables. Any equation written in non-
dimensional form must have all its nondimensional variables of order one if the
perturbation scheme is to succeed. Thus, Egs. (2.2-8 - 11) are satisfactory for
flight where: (l)velocities are the order of orbital velocities; (2} {light path angles
are the order of one radian; (3) pressures are the order of the wing loadiug, and
(4) heights are the order of the orbital radius. Statements (3) and (4) above arc in

obvious conflict. It is instructive, however, to proceed naively and see the anomaly

that results.

- 15 -



2.4 The Keplerian Regime

It a solution to the dynamic equations, Eqs. (2.2-8 - 11), is sought in the
form of a straight forward perturbation expansion, by expression the dependent var-

iables in a power series in€

N"l = 2 &V\ M,'l(“\

(2. 4-1)
N o~z ey " (2. 4-2)
e =3 & o™ (2. 4-3)
* = Z e” ?m (2, 4-4)

then, when Eq. (2.4-4) and Eq. (2.2-7) are substituted into Eq. (2.2-11) and terms

of equal orders in € are equated, the following sequence results:

. \5 'P(o\

& o= - T (2. 4-5)
+
o) (X))
PSR R T (2. 4-6)
dh ( v+ W\
‘ A")(’\"\ Y ,?(n\
ﬁ'\: —— - = —
" (vmy® (2.4-7)

Obviously, the only solution to this sequence is p(n) = 0 for all orders and

therefore the perturbation solution to this problem is p(h) = 0. This is a singular

- 16 -




perturbation problem, because a straight forward perturbation expansion to arbitra-

rily high order can never predict the effect of the small quantity correctly.
As p(h) = 0, substituting Eqs. (2.4-1 - 5) into Egs. (2.2-8 - 11) gives, to
the lowest order in € ,

A"I(O\ - _ A

dh TR (2.4-8)
J ".\ - _L_ _ —\—_-—_ . )

‘L—Q“‘ B Lo'\'“'.‘

PR + W (2.4-10)

These are clearly the equations for describing motion in Keplerian conics.

The solutions given here for future reference are

Y L S

z YO = z {;lo\ za (2.4-11)
N )

(‘b’w‘.\c_os'clo - v\.lo\hr.lu\c.‘\(ob - -k (2'4_12)

o) otie) 1) [T Y X75Y ()
V=t s X V=0UN, Tk Y,

= o5 6 (2.4-13)

n
N

cos P 0wy

where the usual constants of integration, the semi-major axis, a, the angular mo-

mentum, h, and the eccentricity, e, have been introduced. For convenience, it

has been assumed that 8 = 0 at ¥ = 0. The equations correct to next order in € are

% .
For convenience, r =1 + h has also been used.
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F AR O \

—~ o 0 e

an N _
dost" os¥ \ | -
dw (1eny A e (m T (iany m“\\"’"‘ 0 | |@s8”](2. 4-14) x
a6 \ o
J‘A (o) us& ,‘h\‘mxpﬁ 4 e

L - - 4L i

The integralsto these equations are easily produced in terms of the solutions
to the lowest order problem (see Appendix C). Because the small quantity, the
aerodynamic force, does not enter in these equations, the solutions are simply the
perturbation solutions about Keplerian conics. They are obtained by taking the
variation of Eqs. (2.4-11 - 13). Notice that the distinction between the dependent
and independent variable in the solutions given in Eqs. (2.4-13-14) has disappeared.
In fact, any one of the variables N/ , ¥ , ® , or A may be considered to be the
independent variable with the remaining three variables considered the dependent .
variable. This is a common occurrence with solutions of nonlinear equations. To

illustrate this point, variations of all variables will be taken.

. 2.4-15
TN ¢ ;—tm o - o ( )

W(ﬂ "lb\ wsrl.\ - f“\ws‘( 10) swlp\ - *lﬁ)‘“\ S(‘GSY“‘)'O(Z' 4-16)

rm”.c(o) %(tos\‘"‘) (' _v.m”un wss{lo) )

/o) {6)
Cos © (£ * CDS‘ el.) 5‘"9 qe
(2.4-17) )
te) 3]
+ 200 ooy sN,l» N sy o
oS 6‘0) * Co‘é)“‘ gf a O S

Or in matrix form as
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. ; -
]
N ?t 0 o SM’
i
{ cos ¥ Ncesd  -fv ©
1978 {
af Neosy  Nicos¥  fNT (-fNTcosX) (o ‘8
s 6 cose s o058 L
,Jo -“-r-;_. o o o,
S,
t,ws¥, Noeos¥s - ol o
ScnX,
z N \147-1.9!
bt Nieos AT (1RGSR g
cos0, Cosbo cosg, cos7Cs
b 4 L -
(2.4-18)

where superscripts have been dropped for convenience.

To obtain the solution to Eq. (2.4-14), r must be considered the independent
variable with &r and 6 T, equal to zero. The above equations can then be inverted
to give the perturbation év, 8cosY, and 6§86 in terms of their initial values. It is
then finally observed that these perturbations are the solutions to Eq. (2.4-14)
Specifically,

4"”') = gm-t.

wos¥" = Scos X (2.4-19)

olu = %G

That the solutions to the perturbation equations are related to the solutions
of the lowest order problem in this simple manner has been known since the time

of Laplace, but is evidently not widely publicized in the engineering literature.
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Investigators are continually reporting integrating the perturbation equations, or
the adjoint equations (the backward perturbation equations) for Keplerian
. (100, 101)
conics .
In future non-singular problems, the small quantity will enter in the higher-
order problem. This will make the integration somewhat more difficult in practice,

but not different conceptually.

2.5 The Aerodynamically Dominated Regime

A straightforward perturbation expansion failed to produce the effect of
aerodynamic forces in the previous section. As has already been indicated, this
failure can be directly traced to an improper scaling of one of the variables in the
problem. It was suggested that pressures could not be the order of the wing loading

at heights that are of the order of the planetary radius. In fact, if one uses an ex-

ponential variation of pressure with height ( 8 = const. = 1)
LY
&
?=% e (2.5-1)
then it is seen that when h = 1
L
T e
L A (2.5-2)

which is exponentially small if € is small.
It is therefore required that either pressure or altitude be rescaled. But

observe that no amount of rescaling of p will make Eq. (2.5. 3) nonsingular

.(? i (2.5-3)
4h £ (1R '
One is then left only with the possibility of rescaling the altitude.
The definition of a new altitude variable
' h
- - -4
k € (2. 5-4)

which should be valid for h = 0(€ ) transforms Eqs. (2.2-8 - 11) into

- 20 -




av S ¥ (1+eW ™
sti \ i \
—_— = -\ -&[ —, - 0sY
AW < ( L+ EW (wekK Y N®
do _ , cot¥
W LTI
de . _ _%
AN (reev )*
(2.5-5)
Formally expanding vz, p, ¥, and 0O as
N_l - Z En M‘l(“\
< ¢
? ?.2-‘ éﬂ? ‘\3
$ = Z en oy (2.5-6)
— tnd
6 =,2,€"0

and equating terms to equal order in € one obtains, to lowest order,

te)
J‘rl(o\ ) C°$'f . M_l(o\

- -

AW G Y
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i‘-:f‘( (o _ o \1 « ﬁ '?(.\

Aecb\ °

4—\;’ ) (2.5-7)
(1) ted

¥
1N

- pf

At this point,it is advantageous to introduce a convention that streamlines

notation considerably. Primes and superscripts will be dropped where no confusion

will result and an equation will be identified by its order in € , and the the order of

the original nondimensional variables that appear. Thus, Eq. (2.5-7) will be

called the "zeroth order equation for v2 =0(1), Yy=0(1), 6 =0(1), p=0(l), and
%
h = 0(€) " or more concisely the "lowest order equations for aero-dominated

flight. " With the elimination of h and superscripts, Eq. (2.5-7) can be written as

n
n
o
|

J__L_?_S“ = -(_l._
AP T (2. 5-8)
do

Notice that only aerodynamic forces enter the problem. Further, there is no range

gained that is of order of the orbital radius during the maneuver.

For constant C and Cp, Eq. (2. 5- 8 may be integrated to give

*Notice that this h is not the same h that appears in Eq. (2.5-7). No confusion will
result after primes have been dropped if the reader recalls that the variables in

this labeling statement are always the original nondimensional variables. See
Section 2. 2.
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-z_('b(g_x \
-]
vt aNte S

COS¥ = CO$¥p * C'Z‘-(_:()-'fb\ (2.5-9)
& = @G

(8, 9)‘

These are the "skip" solutions of Allen and Eggers Notice that they are valid

for an arbitraryvariationof 8 with h, p being specified by the last Eq. (2.5-7)

-G dn
p =% € (2.5-10)

This is of considerable importance especially if the solution is to be computed to
higher order. Typical variations of 8 with h are as much as 20 per cent. This im-
plies that the non-constant 3 effect of the real atmosphere is as important as the
next order correction to the solution. A result equivalent to assuming that 3 is a

constant may be obtained by expanding 3 in a Taylor series. Specifically,

T
B ) =B (N 4 g%%(h—k.\ +e* 3)._3 (h-ho)® (2.5-11)
So
ka (h=ho) te2 (hohot's o,
%\’{3 =B (h-he) & T > (2.5-12)
»$§ ”\'ko\‘
Y SR 4 S A { (2. 5-13)

‘P‘O\ = f° €

which implies that to lowest order the pressure, or equivalently the density,

has a locally exponential variation with height. This is an assumption that is commonly

made in entry dynamics.

=23 -



It should also be observed that Eqs. (2.5~ 9) describe a turning maneuver
done at the expense of kinetic energy. A turning efficiency factor for the maneuver
is seen to be CL/dCD. Thus a vehicle attempting to turn with minimum loss of
kinetic energy should have a high value of CL/CD’ and the converse. This will be
pursued at some length later.

Notice that when p = p_, cosY = cos ¥ and ¥ = = Yo The turn 1s therefore
symmetric about the value, Y = 0 for CL >0. Thus, the"entry angle" equals the
"exit angle". This trajectory could be matched with a Keplerian conic to give the
physically reasonable trajectory that was turned at the bottom by lift-and at the top
by gravity.

A set of perturbation equations governing small variations from this trajec-
tory may be formed by taking a first variation of these solutions with respect to the
initial condition. Again variation with respect to all variables will be taken. The

resulting equations are

-e z%:x %: et_gg o o -“J 'g%\'. 1%::-‘933: RiES

o -sim¥ o -‘.': $% ° -sY, o -2-‘_' $%

0 o I o (lse o ° Vo |80 | (2.5-14)
) BEY ) “P-‘

If altitude, or equivalently the pressure, is taken as the independent variable, then
6pand & P, are zero and Eq. (2.5-14) may be inverted to give a transition matrix

for the perturbations from some initial to final p. Specifically,

St o Bl RN 2 RO o T (e
D C ) I - o || W
b%em{ o o i "B(?J-

(2.5-15)
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The solution to the next order problem

dh
J,‘(\\
dh

o ®
B

Tt |

-

ar -
(o) [? .
R R TR | I
sm"m tee
o) () ) (i
0 +i§( ¢sch cdn ¥ 6 s
o ° ° el\\
-
-2
'i(\ = ”Ib\\ C°+ %
u‘,‘(o\
i (2. 5-16)

may be written explicitly in terms of this transition matrix as

10

- W (XY F 2G, sw Y, 1c. (R !
e [ (S\\!“‘ J 0-‘:
o 5&1(;‘ |
Sy |
o 0 |
-2 ]

\ "
1(\ - ;;m\ ok XY™ dh

(2.5-17)
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2(0) (0)

(See Appendix C.) v and dh are specified in terms of y in Egs. (2.5-7) and
(2.5-9), but unfortunately Eq. (2.5-1l) is not integratable in terms of normally tabu-
lated functions. This is of little consequence as Eq. (2.5-12) serves to define a
function that can be numerically tabulated. An expansion for the solution correct to

order € is then

NE oz R o it

¥ X' 2yt (2. 5-18)
6 29“‘ *éet“

It has thus been demonstrated how one proceeds to higher order, more accurate,
solutions once the lowest crder approximation has been established in the frame-
work of an asymptotic expansion.
If CL is zero, or more correctly, 0(€ ) Eqs. (2.5- 9), are undefined. But
Eqs. (2.5-8) may be integrated directly to give
+ c‘_‘i"’o\
LIRS

Ne=¥S e
(2.5-19)

s ¥ = cos X,

These are the ballistic entry solutions of Allen and Eggers (8, 9).

Notice that these
equations are also valid for an arbitraryvariation of 8 with h.
Similar to the procedure just performed for the skip equation, the solution

to the next order approximation is produced by first obtaining the perturbation

equations, associated with these solutions. These perturbation equations are




T A
G P - Gf -g¥ | T
- cos¥e e Sw
e LN 1 - "t (° ST;."‘"PC. LYY ¢ Py _"ls_c‘_:foc. s Sy
13
6 \ o g
1Y
6 o ' ) < P
- C_Q_ﬁe v cosl, 'cii. ¢ -1 T 195 -1 (2.5-20)
e G - N, Gy ‘T*“,_L?‘C Sl -0 ix‘c z%'%‘- .
84,
= \ o o
= ° %0,
° ° ) o Sf‘
3 - L -

The transition matrix associated with Eq. (2.5-20) considering p as the inde-
pendent variable is

- S Ny L 5 XY -‘3;..(?.«'.\ . -
s‘l(*ﬂ e ¥ - g:(_":_:_‘o Pe’“ ¥ o S"“M
% ()] = 0 \ o ¥ ()
86 ($) o o . 66 ()

L . - i i

(2.5-21)

The solution to the next order approximation,
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[0
v d bl G gmrr sy edny™
dh siny oy
o)
:T" H 0 0
490\
A\ © o
L J U
-2
G \
t _—
+ s'_“«(h N‘“"\ ot ¥
cob ¥

in terms of the transition matrix is

YO
v h
Y [(}) - Q
e m h‘

X 4 ‘:S ()
< {.

- Co (8-1)

SinY, \rt 60“0
e * w G o sm‘{
o !
[8) o]

+v- ;—;,.,\u\-(, dh

oot Y
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A

(2.5-23)




Now, at least, the last component of this equation may be integrated trivially., The
other two components, as before, must be taulated.

In terms of this tabulation, the solution, correct to order €, is

Nt = YO e gt

¥ a4g ¢

X
(2.5-249)

o -‘-6“\‘?2, Glu\

Improvements to the ballistic and skip solutions are of some interest.“o’103)

It has been demonstrated that once these solutions have been produced within the
context of an asymptotic expansion proceeding to a higher order the calculation of
more accurate solutions is a straightforward, if algebraically complex, task. This
is the major advantage of establishing these well known solutions within this sys-
tematic procedure.

A physiologically objectionable quality to flight in this regime is that the
aerodynamic load factor, n, (total aerodynamic acceleration nondimensionalized

with earth reference g, g, €B) given by

1
= J RLET
Ae o (gt 3o
(]

(2.5-25)

is large (order ) (See Table I) The maximum value of both the load factor and

c
E'goO
the aerodynamic heating may be easily calculated. Observe that both the aerodyna-
mic heating and load factor may be expressed in the functional form as an aero-

dynamic effect,G, (see Appendix F)
T
G ecog'n (2.5-28)

and that the maximum of G, G , occurs when

dlawt L
Aing RN (2.5-27)

But for both ballistic and skip trajectories
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t L
ANt o (2.5-28)

at sinyY

(Neglecting for the moment the variation of §.) Thus, for a ballistic trajectory, :

the maximum aerodynamic effect occurs when

¢
t .
(t . ( AN \ AR A (2.5-29)
o i ©Co
A
mg
which is at low altitudes for vehicles with large "ballistic coefficient, " oy
D

and large entry angles, Yo. The maximum value of the aerodynamic effect is then

P SRR 1 ¢ ) - i3
G = e (‘-lg 7_‘0.\ N e (2. 5-30)

It increases with increasing flight path angle and depends on the geometry of the

vehicle only through the value of CD. Further the maximum aerodynamic load fac-

B3

tor, n,is

* S\ ‘ﬁ “ T

N o= Py .
¢ < (2. 5-31)

where the following constants have been substituted in Eq. (2. 5-30)

- %o
Ce = %
(=, )\\:I

It is completely determined by the initial values of flight path angle and velocity.
These results were first reported by Allen and Eggers, (8, 9).

For the purposes here, it is important to observe that the surface of the
planet may be encountered before the maximum aerodynamic effect occurs. Thus,

a weapon entering at large entry angles may only have to tolerate a maximum aero-

dynamic effect of




(o miG B
oo~ G g, L, ‘e Sinde ) (2.5-32)

where p 1’ Py and G, are the values of p, p and G at the surface of the planet.
This value decreases as the ballistic coefficient, mg /CD A, increases and as Yo
increases. The effect of negative lift is to further decrease the surface value of
the aerodynamic effect. Thus, a large ballistic coefficient and flight path angle can
possibly decrease the maximum heating and aerodynamic load encountered by a
weapon prior to surface contact.

Notice that Eq. (2.5-32) is correct to lowest order in € even for nonconstant
B. A corresponding relation for maximum aerodynamic effect, when it does not
occur at the planet surface, may be derived with some algebraic complexity. The

density, p , is

t._ iS_‘:l‘t(\+A_\_V\P\
¢ I oy (2. 5-33)

and the maximum aerodynamic effect is

(2. 5-34

2.6 The Aero-Gravity Perturbed Regime

To this point, we have produced a Keplerian Regime and an Aero-dominated

Regime . It is heuristically plausible to seek a regime where the aerodynamic and
gravity forces enter to equal order. Such a regime must exist where the pressure
is no longer of the same order as the wing loading.

The rescaling of the pressure, or equivalently the density, as

=
T o= 2.6-1
{ € ( )

and its substitution into Eq. (2.5-5) yields a new set of dynamical equations valid

for V2 = 0(1), Y=0(1), h=0(€) and p = 0(€). They are
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2 T
W2 e 8V - e —
an & o 1w ¥ (e enY®
\
\ _ -
‘g—‘;\—“u = T -L-'_ «q - t’(.ru. (lv't\\\‘ﬂ"\ s
40 cot¥
dh B REA

Ah (1ten)t
(2.6-2)
Tolowest order in € , the perturbation equations are
o\'\?' »
An

()]
’\_‘_‘3 ¥ = O

dhn

é_e_lh\ - o
dn

J. () .

(2. 6-3)
which integrate trivially to
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z o)
PR |
cos¥'™ - o 5\69“3

L g, (2. 6-4)
e = 6 _cadn

()Y (3]
| S AR

To next order in € the equations are

é!t Q) . ) o g(n ”.le\

dn g e -2

d cosy® \ " ey

- -z (™ - (v - ,m\csv
(3 )Y

Al—f ‘ = C.o‘]‘ 8“\

(2. 6-5)

L’

Q) "
I -t

These may be integrated by using the p(o) = p(o) (h) dependence given in Eq. (2. 6-4)

to give

s B (7Y -2 (hh

sy ®

o (4 )
vos ¥ 2 J‘( -zr \1-(0 ‘d” A;'M (k-‘m\

6™ = s ¥ (h-hi)

(2. 6-6)
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where
. - (8dh
'fm . 'P,”e- g

1
or in terms of the series correct to order €

T« 'J':' + 2 ( n()“‘\ - zi(h h,)

su‘(

sy = €05, -kgc" ('P““ 'fl'\\ zCns / } h- l\§

6 = ®°~+éw4%°(h-\A

(2. 6-7)

Proceeding to next order is straightforward,though complex. This higher
order solution is of less practical interest because rotating atmosphere effects
must first be included for all planets except Venus. (See Chapter IV.) It is also
simple to observe that, to next order, the effect of nonconstant g enters the problem.
See Egs. (2.6-2). Further, as variations in 8 are larger than 0(€ ), effects of
the real atmosphere are more important than the next order correction to the solu-
tions. It is interesting to observe that none of these effects were included in a solu-

tion for this regime reported by Shen(28) as correct to O(EZ).

2.7 The Equilibrium Glide Regime

Until now, it has been tacitly assumed that the flight path angle Y is of order
one. But it is commonly known that flight paths for entry are usually small. It is
then appropriate to investigate the behavior of dynamical equations for v = 0(¢€),

=0(l), p =0(€) and h=0(€). Letting Y= € Y' in Eqs. (2. 6-2) and as usual drop-
ping the prime, one obtains

Ju" (e 2
- &8¢ - &
Iw ¥ e awes) (1 h\®
\
dcos(€%)

2 - — X
— = - f—"{‘\-( - é‘((mx\ (mk)‘v‘\ cos (£¥)
4w
de - & ot (£Y)
dn (1+ER)

By 0

- -

4 (ah) (2.7-1)
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Substituting the appropriate series for sin€Y, cos € y, and tan € Y, and expanding the

d . 2 . . . .
ependent variables, v~, y, p, in a power series in € , viz.

Nyt Z“é" N-'("\

C“ x(n\

P

N =

Al (2.7-2)

MM

é

m

P = é

one obtains,to lowest order in €

¢
" ?“\

T
iﬁ - - G Sf_l (2.7-3)
ah %
\ \
6 = =34t - (- ‘,J-.,,\ (2.7-4)

}
"

|
Jh K3 (2.7-5)

Ak (2.7-6)

Again, a singular set of equations have been produced. The derivative in Eq. (2.7-1)
has disappeared. This reduces the equations to ordinary algebraic equations for

vZ and Y in terms of p. Notice that Eq. (2.7-4) specifies vZ in terms of pCL and

(2.7-3) and (2. 7-6) specify Y in terms of p, vZ and CD' so that

¥ = —— (2.7-9)
CL f \
3 S
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\

i = _2(o
[ "x( pdlﬂ u.q\ (2.7-10)

where the possibility of 8 CL and CD varying with h is included. There are
Sanger's equilibrium glide solutions. It is important to observe that arbitrary
initial conditions cannot be met. Small deviations from this trajectory fall into .
another regime that will be described in Section 2. 9. Some possibility of remain-
ing on the trajectory is available through the modulation of CL and C.. This,in
effect,requires a vehicle with variable CL and CD to fly such a trajectory.

The aerodynamic load factor given by

[ A
i}
= (¢ + ¢ (2.7-11)
z @t
LR
T
hm ‘ (G5 Co)
- nNF
‘_° & Cu (2.7-12)
increases monotonically to a value that is order one for CL> 0.
The heating rate given by
: ¢ A 2 (2.7-13)
q = Ca ¢ .
does reach a maximum when
Ala N ¢
., 1 (2.7-14)

le\(

or using Eq. (2. 7~9) when
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(2.7-15)
The maximum value of the heating rate is given by

. leu ! ! 3 (2.7-16)
q* “-@(;-1\(( 1+ () \

so that increasing CL decreases the maximum heating rate. The total heating is
given by

Co  i-' r(y~1)
1= QEo ¢ 7 o

() (2.7-17)

CCL (& RN

As i <1 for convective heating, it is seen that high CL increases the total

heat input while high CD decreases the total heat input, The converse is true for
radiative heating.

The range equation may be integrated simply in terms of the velocity to give

(2.7-18)

Notice, prior to leaving the equilibrium glide solution, that there is a nonuniformity

of the solution at v‘2 =1, Forv >1, Eq. (2.7-9) requires that CL<O and Eq.(2.7-10

implies that Y>0. For v2<1 the two equations imply that CL >0 and

Y < 0. At precisely vz Eq. (2.7-9) requires C;,=0. Then if Y=0 then
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dC
--(-i-FTE <» . To pursue this point in detail, define a new variable v2

=v2 -1 and
]

Writing the dynamical equations for v2 = 0(€), YZ =0(€),
L~ 0(€), h=0(€), to lowest order in € yields,

assume it is order € .,

C

‘.Eg/ =Y Y
dh ~
§ 4 X

(2.7-19)

For the first time, all terms in the dynamical equations enter to the same order. A

general solution would indeed be difficult to obtain. But for the purposes here, itis

sufficient to observe that the equation admits a %g— = 0 solution, if

C (2. 7-20)

which is the equilibrium glide solution near circular satellite velocity.
As this portion of the trajectory occurs over an altitude interval that is

obviously small it is plausable to rescale the altitude. So for the original nondi-

mensional variables h = 0(€ %), v2 = v-1=0(€), C_ = 0(l) and Y = 0(€), the
dynamical equations to lowest order in € are

ﬁun’
llk » O

(2.7-21)
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These equations say that the velocity and the pressure (or equivalently the density)
is constant to lowest order and that Y is controllable with variations in CL of order
one. We have produced an equation, presumably describing the short time behavior
of the trajectory. This topic will be treated in a general context later. It is suf-
ficient here to again observe that Y(l) = const is a solution if CL = 0(€).

The equations to next order in € are, assuming CL = 0(€)

i’ tod
dr . w8,

W X ®
[13% 3
_lA.l! = - ('_‘- ( ey - N-Z‘M’
<dw 2 (2.7-22)

These may be integrated to give

,'.t{n/ . - %;l g(bl\ - t(\-—\\.\

(2.7-23)
| ¥4
ywe = g gc.ulk A T A
The expansion for v?' and YZ valid to order € is
IR AR a{;. (codh =~z (ko)
’ (2.7-24)

¥ o~ et - el Cadh - e a0

This solution goes smoothly through Y = 0 and € v2 = vZ -1 = 0 for arbitrary CD and
Cy- |
This rather lengthy investigation of the singularity in the equilibrium glide;
solution serves to illustrate a procedure for investigating the non-uniformities in
any perturbation solution. Generally, a non-uniformity exists where one of the
assumptions made in obtaining the solution fails. Here the assumption that failed

was that the quantity (v2 -1) was order one. The remedy for the problem is always
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to rescale the small quantity and perform another straight forward perturbation

expansion.

2.8 The Orbital Decay Regime

Observing that the integrals for the equilibrium glide regime, Eqs. (2.7-9-
10) are poorly behaved for CL = 0(€), it is natural to seek solutions valid for this

'
case. Returning to Egs. (2.7-1) and letting CL = € CL one obtains,to lowest order
in € ,
dr®
dh

T
C.g‘_v

Nt (2.8-1)
b .
Iv e

The equations may only be satisfied if p is also rescaled. This implies that there is’
no Y = 0(€) flight regime when CL and p = 0(€ ). With this motivation, the behavior
of the dynamical equations, Eqs. (2.7-1),will be investigated for Y = 0(€), vZ = 0(1),
p=0(€ 2’), h = 0(€) and for the moment CL = 0(l). They are

det | gty t g =2 .
- =S T e— - *
An S (6% (1reh)
d cos (e¥) 2 - 2L A N\es(en)
- l¢ (3
—;—r = &3 v € ( RT3 (\té\\gﬂ"\ (2.8-2)
ok S O
A (14eh)?
To lowest order in €, the expansion equations are
o‘ﬂ'tu\
;T =
)
o = o - (I~ ,_i'm\ (2.8-3)

Jim - - {‘o\
d\
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or simply that the velocity to lowest order is circular satellite velocity. To order

€ the expansion equations are

. 8-4
J”u.\ Co (" ”tm (2.8-4)
T
(14
[TSY J% l.\ - - L CL <“\ _ (- k + z_-h- + L \
L = 2 tls) ”,u(t\
dh v (2. 8-5)

By the use of the last equation of Eqs. (2. 8-3) and the result from Eqgs. (2. 8-3) that

vZ(O) =1, vz(l) may be eliminated from Eq. (2. 8-5) to give

\ Jz ~‘l“\ + CD‘“’ _ "_ (_LA‘“‘ -\
- — = : el §
LI S L dh (2. 8-6)
where
to) _ o - gOik
\ = $f ¢ (2.8-7)

This is clearly the equation for a nonlinear oscillation, valid for CL s0(1) or

CL =0(€), and with equilibrium point given by

I
‘ i - - ib—g-
o l_%ct‘(o\lél_l_:ﬁ_p) (2. 8-8)

If this equilibrium flight path angle is substituted in Eq. (2. 8-5) for CL = 0,one

obtains the interesting result

JN’“.)_ cbeb) M,glo\

— = -2

d Co ¢ (2.8-9)
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ey -
Le N.l(“\ + £ N = | & h

(2.8-10)

so that the velocity to order € is just the local satellite velocity. This agrees with’
the well known phenomenon that bodies undergoing orbital decay speed up to main-
tain local circular satellite velocity v;'é It is interesting to observe that we have

shown that this behavior is only possible in a p:O(EZ) flight regime.

2.9 The Moderate Flight Path Angle Low-Density Regime

To this point, only scaling of the variables in integer powers of € have been
considered. As Y enters the dynamic equations to first and second powers for
small Y it is natural to seek a distinguished form of the equation for Y = O(E%). The
writing of the dynamic equations for Y = Q(€ %), p = 0(€), h =0(e), v2 = 0(1) produces

dvt o f N2 4
dh son (et y) (1+eh\"
Accs(éia\ \

1

\
T - fas - e(Tan T (et Voo (D)
oot
dhw (e ewy?

1 (2.9-1)
It is clear that one must seek an expansion in powers of €2. To lowest order
P
zZin
Cdiet o 1
'i N = = G +* (1 uo\\
¥ (2.9-2)
J t» {s)
oo
To next order for the velocity only
Jv”vﬂ C_° <“\»_g(0)
n - = ¥ (2.9-3)

These equations can be integrated to give
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‘_t-m- bt - %CL (?_ %) + (1 %‘-‘ \(k-\\e\

» e A (2.9-4)
R AN YA S AL IEE S ITE NI
L
where
, S
ey, e
The expansion correct to order € 0 in Y and € z in v2 is then
» -1
i 3 L
A et QW5 (e- 0o (b V
* (2.9-5)
3 \
L A XA AR AR - ALY

where \ _Su\\
LA A

This solution describes an oscillatory type of trajectory that occurs whenthe
initial conditions are not correct for an equilibrium glide. See Section 2.7.

Recently, Hanin(

65)has obtained interesting approximations to this type of trajectory
by considering linear perturbations from equilibrium glide. It is expected that the
above expression should give accurate description of the first nonlinear oscillation
where Hanin has shown his results to be in poor agreement with numerical integra-
tion,.

For flight at higher p and low CL a slightly more compligated set of pertilr-
bation equa,‘cionsl results. Consider the dynamic equations for v~ = 0(1), p =0(€ 3),

h = 0(€), Y=0(€?:;
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n-

Q‘ = - ¢ &
dh sin (£38) (reny®

i 1 ' :
:ﬁ:il& " = -egaf - ¢ ( T (nek\‘v‘\ @ (e%8)
v _ - L
an (11en\*

(2.9-9)

To lowest order in €,

These are the form of the dynamic equations assumed by both Eggers(46) and
Chapman(l3) in their analysis of entry dynamics. It is interesting to observe that a
simpler form exists to lowest order for most other regimes of flight. This implies
that these analyses are too accurate in these regimes. To next order, the flight
path component of gravity enters in most regimes so that these analyses are not
uniformly valid to order € for all regimes of hypervelocity flight. With some mani-

pulation the equations may be put in the following form:

4 = L& A e
ey Co(1‘0+ ¢ ”"'\‘0\\

(2.9-11)
where

At Co

and 3, CL and CD were assumed constant. This is the Eggers' equation for con-

stant CL and CD entry. Series solutions have been presented by Eggers(46), Citron
and Meir (33), and Wang and Chu(1 1). These solutions may be more adequate if one




1 1 1 ..
restricts their use to the(;L =0(€?, pl0(€2), Y=0(€2) regime, a restriction not

imposed by these authors,
Larrabee (37) has arranged the equations in the following form:

J_t_.D - 3 J—D 4 i = |-N.z -_ C—L
ANt NdN e p  ©o
-where
. w0 _14d
= T N AN
(2.9-12)
and
z
= Gt X
D o 5
and shown its relation to the Chapman function
w & =D (2.9-13)

which is tabulated in Ref. (14).
One final form of the dynamic equation for moderate flight path angles occurs
for velocities close to orbital velocity. Consider the dynamic equations scaled for
1

Y= 0(€?), vi-l=v2 - o(ed), p=0(€), C. =0(l) andh = 0(€).

L
3w
cidg?’ Co€ (EFN +1) 2
pet = =& - & — .
dosetv | e
dw
(2.9-14)
i ! ;
- —_— - s (68 ¢)
£ ( l+eh (1eeh\E(En’sn) \
d L
A T (14gh)\T

Then, to lowest order in €,0ne obtains?
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A ~
(2.9-15)
a¥¢ - Ce ¢
¥ Tw 3
v
An
which can be integrated to give
vl'r ”otl - zzc-"(b'-x-\
- (2.9-16)
’6‘-—!." -'-"cL('P—‘Po\
or for CL = (€ %)
’ 1 X4 Co
pt o= N.o - 7 "P- 'P‘\
3
¥ = %, (2.9-17)

Interestingly, these are the limiting forms of the "skip" and "ballistic" equation for
small Y. See Section 2.5. Understandably, the same equations that apply when
aerodynamic forces mask gravity and centrifugal accelerations are valid when these
forces are small due to small flight path angle and near balance of gravity and cen-

tirfugal accelerations. These are the lowest order equation used by Lees et.al, in
Ref. (7).

2.10 The Near Sonic Flight Rg&ime

Until now, only trajectories with velocity the order of orbital velocity have
been considered. The next distinguished form of the dynamic equations occurs
1
when the velocity is order € 2 or when v2 = 0(€). This is the order of sonic velocity

in all atmospheres. This is easily seen by expressing the Mach number, M, in

terms of current parameters
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AEN v
H - — = (2.10-1)
. Vier Ve %

Where Y is the ratio of specific heats and is near one for all gases. So if v2 = 0(€),

M = 0(1). The writing of the dynamical equations for vZ =0(e), h=0(€}, 6 =0(€),

= 0(1) and p = 0(1) yields

dn SN (\ren\®
d cos¥ ¢ |3 !
— N - _— - = s
A - < ¢ ( e (n&k\‘tz\ ¥
‘l@ &Co‘\"‘ (2.10-2)
A | +&hn
d4
: In " T
To lowest order in € one has
J”-l &M.l
o = - e - Z
A “ sSmy
deos ¥ _ C 1
A
(2.10-3)
4_6 = (_o'l' 1
dh

-
-

= -

=

These are equations describing flight over a flat, constant gravity earth. It isinter-

esting to observe that these are the assumptions commonly made in deriving the dy-

namic equations for flight at velocities the order of sonic velocity.
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Solutions for these equations are difficult. One interesting set of solutions

can be obtained by assuming flight is at small flight path angles. Thus for Y = 0(€)

and h = 0(¢ Z) the equations carried to lowest order are

det ot
Ah >y

Co L
8} =7 E‘ + Al

(2.10-4)

p SN

S
r‘“’
of

SES
H
)

These equations are singular, completely specifying the p, VZ, and Y necessary

to fly along the trajectory. The range equation may be integrated to give

6?' ‘Aro‘ - Z‘Cb J'e

(2.10-5)
Cu
Cp
which is valid for any variation of ol with 6 that is capable of maintaining
L
C
Y =0(€). So, integrals for the sonic regime are available for values of C-I-?—which
_ L
keep Y = 0(€).

2.11 The lLow Velocity Flight Regime

To this point, flight at velocities the order of orbital velocity and velocities

the order of sonic velocity have been considered. Another distinguished form of the

dynamic equation occurs when the velocity is of order € . To see this, write the

dynamic equations for v‘2 = 0(62), h=0(), Y=0(1), and p = 0f —é— ):
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A 4 < (2.11-1)
e _ ¢o
ah j+eh
de . £
An (1+ew\?
To lowest order in € the equations become '
4
o & - (21.” - 2
S\ Y
(2.11-2)
¢ - (- L
6 = - -;-' g ( ‘\f‘\ ws ¥
de = CO'\' ¥

Anp_=_< .

These simply say that the aerodynamic and gravity forces are in balance to lowest

order

iV « —sn¥

f o

(2.11-3)

These equations have formed the back bone of "quasi- steady"(47)

performance of
aircraft. It is understandable that such analysis has proved inadequate for comput-

ing the performance of vehicles capable of near sonic velocity.

2.12 A Systematic Procedure for Identifying Regimes of Flight

The procedure for identifying the flight regime up to now has been ad hoc,
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based to some extent on intuition. This procedure can readily be systematized.
Observe that to this point we have tried various possible scalings of the variables
in the dynarmnic equations. When a meaningful lowest order balance occurred in the
equations between acceleration, aerodynamic and gravity terms, this was identified
as a regime of flight.

A systematic exhaustion of all such regimes is possible. It simply requires
that an arbitrary scaling be applied to the variables in the dynamic equations and

that all possible balances between terms be investigated. However, some difficulty
will occur.

The dynamic equations for v‘2 = O(ez'n"),

p=0(e"P), h=0("), Y=0( ™V,
CL = O(EnL) are

t'l“v'ﬂh JMI .- é“"vllnol Q&?Nl ) 2
o @) (1Y @ 12-1
-y
L
-n Aas(& &\)_ \ \"fn‘_—l ' i £ .
& h Ah = - ié C\_??- ( '*f.'"h (l*zn.ﬁz”‘\ COS(& b‘x\

(2.12-2)

: "p-th g - $p
T -é (I?Eh“\\)t

i

where the range equation has not been included. Cursory analysis will
reveal that a myriad of possibilities can exist. The situation may be made tract-
able by considering first h =0(€) and Y< 0(1l). For this value of scaling, h never
explicitly enters the lowest order problem. Its implicit dependence may be elimi-
nated by use of the hydrostatic equation, Eq. (2.12-3). Further, sinY and cos ¥
will be conveniently expressed in terms of their appropriate series, retaining only

the first term. With these simplifications, Eqs. (2.12-1 -3) become, to lowest
order,

1Ny MNg -ty . A2 1 ;
¢ ,L,rtaé AR K_o_'f 26— (2.12-4)

Iy siny §7
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I-z”r
rX n | sy -
£ L“syzéofﬂ\\.&_*(é_é- ) (2.12-5)
4 2 Nt P
Considering first Eq. (2.12-4) the following possibilities exist:
(1) Flight path acceleration dominates if

2n <2n_+n_-n,, 1
v v P Y
(2) Drag dominates if
2n. +n_ -n,<2n, 1
v P Y v

(3) The flight path component of gravity dominates if
1<2n, n_ + n_-2n
v v P
These inequalities are easiest to interpret in terms of the regions of a
Euclidean space where va, np and n,, are the coordinates (see Fig. 2.12-1). The

Y
inequalities then define regions of this space where the appropriate term in the dif-

Y

ferential equation dominates. As n_, np and ny are the scaling in € of v, p andY,
the plot may be interpreted as an inverse log plot of regions in state space.

In Fig. 2.12-11it is seen that the state space is divided into three regions.
Flight path acceleration dominates for low densities and high velocities. Drag domi-
nates for high densities and small flight path angles, and the velocity component of
gravity dominates for low velocities. Notice only when the velocities are order of
sonic velocity (v?‘: 0(€)) and densities and flight path angles are of equal order do
all terms enter to equal order in the differential equation.

Proceeding in an analogous manner with Eq. (2.12-4) one arrives at the fol-
lowing conditions:

(1) Normal acceleration dominates if

2.nY<np 4 ng, 1, l-Znv

(2) Lift dominates if

np + ny <2n\l, 1, 1 -va
(3) Centrifugal acceleration dominates if
1 <2.ny, np + ny, 1 -va

(4) The normal component of gravity dominates if
1 -va <2ny, np + ny, 1
These conditions may be similarly interpreted in terms of partitions in state
space. See Fig. 2.12-1. The scaling of lift coefficient and density have been com-

bined to allow a three-dimensional sketch., There are now four divisions of the
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Fig. 2.12-1

Regions of Behavior of Dynamic Equations for y <0(l), h=0(€)
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space, centrifugal acceleration dominates at large velocities, small densities (or p)
and small flight path angles. The normal component of gravity dominates at small
velocities, flight path angles and densities(or CL)' Normal acceleration dominates
at large velocities and flight path angles. Lift dominates at large velocities and
densities {(or CL)‘
It is interesting to observe that all terms in the differential equation are of

the same order only when the velocity is the order of orbital velocity, flight path
angle is order € and the density CL product is of order € . As this region of state

space does not correspond to the region where one obtains complete balance for the

flight path equation, there is no region of state space where all terms in both dynam-

ical equation enter to the same order.

To map the region of state space where the flight path angle is order 7 /2

requires that the dynamic equations be rewritten in terms of

8! <« X% ..‘_E (2.12-4)
1
With this redefinition and for ¥ = 0(€™Y), v2=0(c®™), p=0(e™P), ¢ = 0(c"L),
and h = 0(€) the dynamic equations to lowest order in € are:
] 13
Pl Nt Aty ot 0 L (2.12-7)
ITP = & cos ¥ pr
=20y '
dany Np+M-Ny ¢, + (é*— — $§W\_K
— - M-?-
dp ¥y (2. 12-8)

where only the first terms are to be retained in series expansions for sin Y'
and cos Y‘. The regions of behavior of these equations are defined by the following
conditions:

(1) For dominant flight path acceleration

, 1
P

{2) For dominant drag

2n + n_<2n_, 1
v P v

{3) For dominant flight path component of gravity
1<2n , 2n_ + n
v v

2n <2n_ + n
v v

p
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(4) For dominant normal acceleration

4] <np + ng _nY" 1, 1 —&nv

(5) For dominant lift

np + n —nYl <0, 1 1 -Z.nv
(6) For dominant centrifugal acceleration "
-n ! -
1 <0, np +nL ny', 1 Z.nv

This condition obviously cannot be satisfied. )
(7) For dominant normal component of gravity

1 —va <0, np + ny o-nyt, 1

Again, these conditions are easist to interpret in terms of diviéions of state space.
See Fig. 2.12-2. There is a balance between drag and flight path accelerations at
high velocities for densities order one. There is a balancle between flight path
acceleration and gravity component for velocities order € 2 and low densities. And
finally, there is a balance between drag and the flight path component of gravity for
high densities and low velocities.

Interestingly, a balance occurs only among all three terms in the flight path
equation for densities of order one and velocities the order of sonic velocity. Since
the flight path angles are large, this should be a short-lived portion of the trajec-
tory.

In Fig. 2.12-2, it is seen that balance between normal gravity, lift and nor-
mal acceleration occur only for velocities of the order of sonic velocity, and where
the order of Y' equals the order of the p CL product. As one normally has control
over the value of CL’ this condition need never occur. Notice finally, that Figs.
2.12-1 and 2.12-2 join properly at n.,' =0, n, = 0.

Prior to proceeding to the h = 0(¢€ Z) regime, a comment on its impliciation
is in order. Notice that the independent variable h was introduced by use of the

kinematic relation

f S
-

= N sinY¥

o

<|.

To produce a nonsingular set of equations, it is presumed that this equation is in

balance. Specifically, that

olh) = o (Ao (sn¥) o(t)

so that specifying the order of h, v, and sinY specifies the order of t. Thus, for

example, a regime that has h =0(€ Z), v = 0(1), sin¥ = 0(1), must occur on a time N
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Fig. 2.12-2

Regions of Behavior of Dynamic Equations for Y =-;— -Y<0(1l), h =0(€)
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scale of order € 2 which is probably too short to be of interest in trajectory analysis
but is exactly the time scale for stability analysis. Therefore, the implication of
h=20( 2‘) regime is normally flight at either small flight path angles,or n velocities

or rapid time scales.

The equations, valid to lowest order in € , for h = 0(€ 2‘), v2 = 0(e ZnV),
p=0(€™), C, mo(e™), Y=0(e”¥)Z0(1) are
20y + Ry - Nyt 2
z
¢ Nt cb&ﬂ - 2¢% (2.12-9)
dh sny
2=-2My
& I = & ?-.;&'P - (&7- e ) (2.12-10)
d¥ gy
ah (2.12-11)

where appropriate series are assumed substituted for sinY and cos Yyas Y is
presumed small. It is seen that p is a constant to lowest order. This is an assunp-
tion normally made in low velocity stability analysis. It is seen to be an equally
valid assumption for velocities the order of sonic velocity if the altitude excursion
of interest is 0(€ 2).

The order of the variables required for each of the terms in the equations
to be dominant are given by the following relations:

(1) For dominant flight path acceleration

n <2n_ + n_-n, +1, 2
v v p Y

(2) For dominant drag

2n + n_ -n +1<2nv,2

v p Y
(3) For dominant flight path component of gravity

2<2n +n_-ny, +1, 2n
v P Y v

(4) For dominant normal acceleration

ZnY <np + np + 1, 2, Z-va

(5) For dominant lift

np + np + 1<2‘.ny, 2, 2 -va
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(6) For dominant centrifugal acceleration

2<2nY; np + ng + 1, 2 -va

(7Y For dominant normal component of gravity

Z-va <2nY, np+nL +1, 2

These conditions are illustrated in Fig. 2.12-3. By comparing these

figures with Figs. 2.12-1 one sees that they are topologically similar. There is a
stretching of the va and ny coordinates which reflects the interrelation of v, ¥, and
h that has already been discussed. The interesting feature of these figures is that
motion occurs along constant n_ planes. Then, for example, the classical phugoid
oscillation for a glider at v2 = 0(€%), Y=0(1), p C = 0(%) can be interpreted asa
motion where gravity and drag are in balance along the flight path. A transition
is then made from lift and acceleration balance to a gravity and acceleration belance
normal to the flight path., If the altitude excusion is allowed to be order € then it is
seen in Fig., 2.12-1 that the possibility for this type of motion exists at sonic veloc-
ities and at wing loadings,(p CL) of order one. Such motion cannot exist without
thrust,for velocities the order of orbital velocity, because drag always dominates the
flight path component of gravity. This has led to some confusion in current litera-
ture on the subject. (43, 44, 45)

It has been shown in Section 2. 9 that there are distinguished forms of the
dynamic equations associated with velocities close to satellite velocity or small

v2 -1. To investigate this behavior introduce the variable

At e NT=) (2.12-12)

' 1
Then the dynamic equations, valid to lowest order in €, for h 20(€) vz' 20(€ Zn") <0(1),

L =0(¢”P), C =0(€™L), Y=0(™V) 20(1) are

/ Ny -0y
61“‘,&1 . ¢ ? Co L 2é (2.12-13)
A? sy
ln"-l‘.‘ J
n t
™ d os¥ e C_i'- + €& J w__;‘( (2.12-14)

Where the appropriate series are assumed substituted for sinY and cos Y.

The orders in € of the variables required for each of the terms in the
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Regimes of Behavior of Dynamic Equations for
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dynamic equations to be dominant, are given by the following relations:

(1) For dominant flight path acceleration

Z.nvl <np Dy 1

(2) For dominant drag
_ 1

np n\l<2nV , 1

(3) For dominant flight path component of gravity

1< val , np —nY
(4) For dominant-normal acceleratation
Z.nY<nL t np, val + 1

(5) For dominant lift

ng + np <2nY, va\+ 1

(6) For dominant normal gravity centrifugal acceleration difference

va.+1<2n n. +n

Y L P
These conditions are illustrated in Fig. 2.12-4 . It is observed that there is a pos-
sible balance of all terms in the dynamic equations for v2 = 0(6),CLp = 0(€ 2)
p =0(e Z). This is the only condition for which such a balance is possible and it
may be destroyed by choice of a CL not of order one. The equilibrium glide con-
dition0 = a; +a_ + g/ is seezrll to exist on a plane that requires Y and pCL to
become arbitrarily small as v© becomes small, a result that has already been
observed. Orbital decay is seen to be characterized by the normal component of
gravity and centrifugal acceleration in near balance,and drag nearly balancing the
flight path component 6f gravity.

A particularly useful observation is that there is a relatively large regionof
the state space where only aerodynamic forces balance the normal and flight path

accelerations. This is the near orbital velocity aerodynamically dominated regime.

2.13 A Multiple Regime Solution

After producing expansions for numerous regimes associated with flight at
orbital velocities, it is natural to seek a single solution that to lowest order con-
forms to these expansions. Such a solution would preclude the practical problem of
choosing the proper expansions associated with given initial conditions if only lowest
order results are desired.

It also holds the possibility of being valid for a complete trajectory that tra-
verses a number of these regimes. This possibility may well not be realized for it
will be shown in Chapter III that the matching principle sometimes requires a tra-
jectory to be determined to order € in one regime prior to establishing the initial
conditions to lowest order in another regime. Certainly the next order correction

to this lowest order solution would preclude this difficulty but it will result that the
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solution is overly complex even to lowest order. A procedure that assures validity
of a solution for the number of regimes of interest,and usually produces solutions of
less complexity than this multiple regime solution,will be illustrated in Chapter III.

This multiple regime solution will now be developed. It will be shown to
have a close but not exact similarity to Loh's "second order" solution. This,in
effect, will supply an analytical justification of the numerical success experienced
by Loh's empirically developed solution and also serve to define its region of
validity. It will also correct Loh's solution and place it in a form that will allow
systematic higher approximations.

Consider the following lowest order dynamic equations:

|
‘L,Q‘_‘\,,,ix = --‘ECLQ -{(\ - 'N—_‘!\(.os‘(. (2.13-1)

o
3
~
|

Co (N C
sin Y

|
[

(2.13-2)

o_
>

|

tanY (2.13-3)

I

[« WY L.
>0
#

[
3

|

-

Q-
et

(2.13-4)

It is observed that these equations neglect terms no larger than order € for the fol- '
lowing ranges of the dynamic variables:

(1) h =0(€), v'2 =0(), Y=0(1), p=0(l) See Section 2.5.

(2) h = 0(€), v2=0(1), Y=0(), p=0(€) See Section 2. 6.

(3) h = 0(¢), v2=0(1), Y=0(€?), p=0(€) See Section 2.9.

(4) h = 0(€), v2 -1= O(e%), Y= 0(6%), p = 0(€) See Section 2.9
A slight rearrangement of equations, Egs. (2.13-1 - 2) and (2. 13-4) yields:

it
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deosy = -\Z-C\.clrp -E(V- E\COSXOJ\

Mgt = codw

sy
. ; A
d¥ = - %, dait 4 eV - L) @s % oy

which may be integrated to give
ws¥ -cos¥e = 3 C (1p- ﬁ\-fosl(",ta\(k-k.)
o - e oy o .
LAY Slsmws §cos¥, +3 G (P-8)
%

3 4
- éeosd(1- %;\(\-k.\gl dyp

Co |\ N°

or % - fo = byl e

<+

\
- ) § Tomes'femde + £ 631

. -1
-éws‘&(l-;;‘..;\ (h- k.\‘ﬂ dh
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(2.13-5)

(2.13-6)

(2.13-7)

(2.13-8)

(2.13-9)

(2.13-10)




The range equation, Eq. (2.13-3),may be integrated to give
" i
6-6.s  [hmeos™ { sttt (47R)
h

s, (1= | (h b 4

(2.13-11)
where as usual, p and h are related by

- 53@\\\
pere

(2.13-12)

Loh's solution may be produced by making the following approximate integrations:
(1) The last term in Eq. (2.13-5):

VS g (- L) TR

cosx°(|--;‘-r°,.\gelh = sy, (‘-‘E‘ 3 T

(2.13-13)
(2) The last term in Eq. (2.12~7):

cos % | '\S = —cos¥, 'W“"““m(\ \'"5-‘

(2.13-14)
This transforms Eq. (2.13-8) and (2.13-9) into

Cos ¥ = COS¥, + %('p-'ﬁ\ "’E.( | - Iﬁ.\‘c‘%‘;&(,‘;_?‘\)
[

(2.13-15)
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(2.13-16)
These approximate integrations are not of lowest order importance if either

1
(1- —12—) = 0(€? or p = 0(l). These are the trajectories that Loh predicts with the
Yo
greatest accuracy. If one of these conditions is not satisfied, the solutions are not

valid to lowest order. This has been numerically verified by Citron and Meir(33) .

A final bit of tailoring is accomplished by observing that there is some de-

g.ee of freedom left in the choice of the initial conditioens in the term,

cos Yo(l —1—2). At the sacrifice of coupling the equation for Y and v as functions of

v
(¢}

p and p,or equivalently h, these initial conditions may be established instantaneously
by use of the current values of ¥ and v2 . This may allow the solutions to traverse
several of the regimes for which they are valid to lowest order without the bother.
of re-establishing the initial conditions on this term. Interestingly, it also makes
the solution valid to lowest order for the equilibrium glide regime where h = 0(€),

v2 =0(1), Y=0{(€), p =0(€). With this modification, Eqs. (2.13-15) and (2. 13-16)
become

0S¥ = cos ¥, i-c_;(?-'&\ + £(|~l”‘\ C.-Oisx (,P_?o\

(2.13-17)
- = -& | f_t - vos ¥ - Vg
¥ %, z%“,{: & f-?-; (v A;L\‘V\Tv‘..‘
(2.13-18)

Where p and p are now assumed to have an exponential variation with h
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-8 (h=ha)
LR

= 8o (h=h) (2.13-19

=t

These are Loh's "second order" solutions for planetary entry. It is observed that
they are only valid to lowest (or *first") order and not to "second order" as claimed
But they are valid to lowest order for a number of regimes. Specifically for:

(1) h=0(€), v=0(1), Y=0(1), p = 0(1)

(2) h=0(€), vZ=o0(1), Y= 0(1), p = 0(e)

(3) b =0(€), v =0(1), V= 0(e?), p=0(9)

(4) h=0(€), v- =1 =0(€2), Y=0(€?), p=0(€)

(5) h=0(€), v¥=0(1), Y=0(€), p = 0(€)

with the additional restriction that

| SN ST A

¢ (2. 13-20)

Eqs.(2.13-8 - 11) are valid in these same regimes without this final restriction if

a similar ruse of instantaneously establishing the initial conditions on the quantity,

cos Y, (1 -—l-z) is used. They are more complex. If a solution of this range of

Yo
validity is not needed, an approach that may obtain simpler, more accurate solu-
tions is to match the expansions for the range of interest. An example of this pro-

cedure will be given in Chapter IIIL
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CHAPTER III

PATCHIN G AND MATCHING THE ASYMPTOTIC EXPANSIONS

3.1 Introduction

To this point, only identification of the regimes of flight and solutions of the
appropriate dynamic equation in asymptotic expansions have been considered. But
if a trajectory that traverses several regimes of flight is to be analyzed, some
method of combining the previously obtained solutions must be sought.

The simplest method of combining the solutions is to patch them together at
their common boundary. As the two solutions were obtained by a different scaling
in € of one of the variables in the dynamic equations, ostensibly there is an inter-
mediate scaling of that variable which can be used to define a boundary. The arbi-
trary constants in one solution can be picked so that the two solutions agree at this

boundary. This is a method suggested by Battin(”) (55)

and Pontryagin, et al,

It is clear that such a procedure creates a corner. A term in the dynamic
equation that was of order one in one region may be of order € in the other. One
has arbitrarily picked a point to change the dynamic equations from one form to
another. Though this is heuristically not pleasing, it may not create an appreci-
able error in the combined solution, especially if the two solutions were accurate
to an order € higher than was needed.

The procedure for combining solutions that will be used here is the
"Matching Principle" of Kaplan and Lagerstrom(4’ 51 (see Appendix B). It is
slightly more sophisticated and consequently more complicated. It is not apparent
that the results always warrant the extra complexity, but at least conceptually it is
more pleasing,

The principle is founded on the assumption that the two expansions share
some common region of validity, an "overlap domain". If the two expansions are
to match smoothly, they must be algebraically identical, to each order in €, in
this region. The arbitrary constants in the two expansions are chosen so that this
matching occurs. A solution that smoothly transitions from one expansion to
another is then formed by summing the two expansions and subtracting their com-
mon part. This solution is called a composite expansion for the two regimes that
are matched.

Two solutions will be matched. The first will produce the well established

procedure for patching Keplerian conics to ballistic trajectories within this more
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general context. The second will produce a solution not previously published, valid

for an interesting class of lifting trajectories.

3.2 Matching a Keplerian Conic With a Ballistic Trajectory

The {first use of the matching principle will be to match a Keplerian conic
and an aerodominated ballistic trajectory. The result will be, in some sense,
obvious, but will serve to illustrate some features of the principle on a simple
example.

The ballistic trajectory solution, to lowest order in € , is(see Section 2. 5)

cﬁl'pn-poo\
{v.ut - d;:. 4 30 Yo

cos “‘ = Co% Yo

e‘ hd e‘. (3. Z-l)
- Gpdh
h=tc
The solution for a Keplerian conic is (see Section 2. 4)
T

v: ' E A—.." - L

T 1ten z Pox

(150 Np s ¥ = VouNor cos Yor (3. 2-2)

1= (EWNAE sty ’ \-fotﬁo:‘“(u
€080y Cos Oz

where the ballistic trajectory variable (height), has been introduced by the

relation,

t=\12&h (3.2-3)

The limiting form of the ballistic solution as h —» o is
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This is the form of the ballistic solution valid in the "overlap domain".

ing form of the Keplerian solution as h-#0 to lowest order in € is,

4
[

- =
(2

e (OS5 l‘t.

| - ;":“51‘1
oS 8,

This is the form of the Keplerian solution valid in the "overlap domain".

"
®

Nee )
N 2 Yot

= roz hroz ‘—OSKOZ

L= Yoy Nog 0S5 Yoz
0% oy

requirement that these two limiting forms match, i.e.,
zhrl . b”'-

4

é\ * lel

(3.2-4)

The limit-

(3.2-5)

The

(3. 2-6)

determines the initial condition for the ballistic trajectory in terms of the initial con-

dition for the Keplerian trajectory.

To reduce the algebraic complexity and to gain some insight into the mean-

ing of these conditions, assume that the initial conditions for the Keplerian phase

are given at the reference radius so that

- |

foz
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Then Eqgs. (3.2-5) reduce to

2 T
’J;_ = ol

= cos ¥
cos ¥, ot (3. 2-8)

LOoS ‘e; = oS 60:

Further, as is arbitrary, to lowest order, assume that it is zero so that
Po Yy

Eqgs. (3.2-4) reduce to

Y (3

Y = T

oS zf‘ =  CO% \‘o\

(3.2-9)
;e = 60\

)

Then Eqgs. (3.2-6) imply that the initial conditions for the Keplerian and ballistic

trajectory are related as follows:

t
ﬂ;f- = ”‘1
o, = 1¥ (3.2-10)
Qo. = :607.

These are the relations commonly assumed in "patching" ballistic and Keplerian

trajectories. So, to lowest order, the matching procedure conforms to intuition.

3.3 Matching the Aero-gravity Perturbed and the Aero-dominated Regimes.

A slightly more interesting application of the matching principle occurs when
the aero-gravity perturbed phase is matched with an aero-dominated "skip. " This
will produce a composite expansion applicable for a currently interesting class of
lifting weapon and manned vehicle trajectories.

The skip solution, correct to lowest or zeroth order in €, for aero-domin-
ated flight is
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) - T (¥, = fa)
NS =10 e (3.3-1)

whf, =Cos%er * £+ CulP =~ Po) (3. 3-2)

Recall that these equations are valid for p = 0(1), vz = 0(1l), Y=0(1). See Section
2.5,

The aero-gravity perturbed solution, correct to first order in €, is

NE =N + ¢ M;t - B) - 2&(h-he) (3.3-3)

smg

Cos ¥, * oS Yor + £ .,, - - Q.A & s, [ M’"‘)( h-ho)

(3.3-4)

Recall that his solution is valid for p = 0(€), vz' = 0(1), Y=0(1). See Section 2.6,

For both solutions,

g = ﬁe'w‘“" (3.3-5)

The limiting form of the latter solution as P~ (the "overlap" domain form) to the

lowest order in € is

i o= N o+ o Aov P (3.3-9

I
SMVM.

oS 3(,_ = CoS (oz r oS 'P, (3.3-7)
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Notice that this is equivalent to taking the first term in this expansion for small€.See
Appendix C. The limiting form of Eq. (3. 3-2) as p;=*0 {the "overlap" domainform)
is seen tomatch Eq. (3.3-7) if

oS ‘0\ = Cos xo 2 v

(3. 3-8) .
o, = O

This same result may be produced more formally by expressing Eq. (3. 3-2) in the

variable p 2

\
ws ¥, = 603"69‘ * zC\.(E.'P; - ’P°|\ (3.3-9)
and truncating the series at the second term

cos 1‘6. = o5 ~‘ol - ‘\r_c-\. ?on 'f&-l,_cl.ﬁog (3.3-10)

Then requiring, from Eqs. (3.3-7) and (3. 3-10), that ZYI = lYZ yields

s ¥o, = <05 ¥or

'PO' - 0O

(3.3-11)

which is the result given in Eq. (3. 3-8).
To obtain the limiting form of Eq. (3.3-1) as g 0, notice that as pl-OO, Yl "YOI'
Then the limiting form of Eq. (3.3-1) may be expressed as

2 3 _ 2¢
zfro = N;' (1 'c.—:(';‘\ - %)) (3.3-12)

Now to obtain a relation between an angle slightly different from Yo1 and Py’

observe that for small ZYI - YOI, .

. -¥\= L -
SN {.| (1_‘| ol\ 2 CL(?. ?Ol\ (3.3-13) -

from Eq (3. 3-2)
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so that

o P
£, =% = -3 X2 3.3-14
r Al 01 2 SR X, (3. )

Substitution of this into Eq. (3. 3-12) yields

;0‘.: - N;“ (Vv + C:;G"_% ) (3.3-15)
[ 1)

This matches Eq. (3.3-6) if

v

o\

= Npe

(3.3-16)
s, = S\N¥y

which implies that to lowest order the initial conditions are not affected by a
transition through this regime. This explains why this phase of the trajectory was
neglected when matching a Keplerian conic to a ballistic trajectory.

Here the more formal matching is made algebraically complex by the form
of the skip solution. Specifically, by expressing Eq. (3. 3-1) in the variable p,,one

obtains

- z—:—: (CD‘d(mu‘rfll 4} (Cﬂ’ Pol\ \' 800\

3 T
o= ’l;u €
(3.3-17)
which for small € may be expressed as
T T & X
‘I - N-Ol ( ‘*é s|““ ?L + o(e » \
(3.3-18)

where Pg; = 0 from Eq. {3.3-11) was used. Truncating the series at the

second term vyields,
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= /\l;f'(H 3 c‘ﬁ‘) (3.3-19)

s\“ KGl

Requiring that V2 7 2vh in Egs. (3. 3-6) and Egs. (3.3-19) gives

ML\ = N.ot

(3. 3-20)
Sy, = SN op

which is the same result give in Eq. (3. 3-16),
A description of the trajectory in terms of a "composite" expansion is con-
venient, This expansion is formed by summing the individual expansions and sub-

tracting their common limit. (See Appendix C).

L "M.'t +”: _|Af;l

(3.3-21)
WSY = Cos ¥, + LSz — 8,
” v . Nt _ \
N J;Ko (= %) ~ 28 (h-he
2 (¢, - %)
o — @ VO °
TN e
. (3.3-22)
08B = LB+ & (B )
|
- & WS ¥ ( -;Fo-" _‘\(k"l\o\
where
ws ¥, = s¥o + &
and - Spdw

e R
Notice that the matching principle has related all the arbitrary constants in the two

solutions except Pg, OF equivalently hOZ.' This is of no consequence if the trajectory

is coming down from the aero-gravity perturbed regime into the aero-dominated
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regime because its value is initially known and is not required for the lowest order
skip problem. But, if the trajectory is going the other way, the value of POZ is
needed to define the trajectory. To obtain this value, the skip trajectory must be
calculated to next order. Thus, the aero-gravity perturbed problem has to be
found to order € to determine the arbitrary constants in the skip problem to order
one. Now the skip problem has to be calculated to order € to determine the arbi-
trary constants in the aero-gravity perturbed problem to order € . This uneven
balancing of orders of the problem to obtain matching is a common occurrence.
The composite expansion is closely related to Loh's "second-order"

2, 35,33
( ) g

solution iven here for reference. (See Section 2.13).

ws¥, 43 G (1- e

e (G- iy

cos ¥ =

2 (3.3-23)
In Nt El(a"m\
T

N ~ ¢ o (L -
e 1 L*?thﬁ

The composite solution has the advantage of: (1) conforming to the "second-order" -
solution in the p = 0(1) regime to lowest order,(2) being valid in the p = 0(€),

Y = 0(1) regime to order € where Loh's solution is only valid to order one, (3) is
numerically simpler to use.

Though it does not have the range of validity of I.oh's solution, in its limited
regimes it is more accurate. Its range of validity does include a number of cur-
rently interesting classes of trajectories. One is a super circular skip trajectory
of an Apollo type which has the objective of losing velocity in excess of circular-
satellite velocity. The second trajectory is a negative lift trajectory characteristic
of a lifting weapon.

Unfortunately, the solution in its present form is incapable of defining super
circular orbit after a skip occurs, as the next order solution has not been included.
But results up to this point are in excellent agreement with numerical solution.

(See Fig. 3.3-1) The lifting down trajectory starts in an aero-dominated regime
near orbital velocity. It traverses the aero-gravity perturbed regime at large flight
path angles and then goes back into an aero-dominated regime at low altitudes. This,

also, is in agreement with the numerical solutions. (See Fig. 3.3-2.)
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CHAPTER IV

THE DYNAMICS OF THREE-DIMENSIONAL THRUSTING F LIGHT

4.1 Introduction

To this point, only two-dimensional nonthrusting flight about a spherically
symmetric planet, with a nonrotating atmosphere, has been considered. The
three-dimensional form of this problem is handled by noting that lift forces, out of
the velocity-vector, planet-center plane, simply rotate this plane and leave the two-
dimensional in plane problem unaltered. This, in effect, says that the dynamic
equations for the in-plane out-of-plane problems are cornpletely uncoupled and may
be treated separately. The thrusting problem similarly uncouples if thrust is re-

volved into an in-plane and out-of-plane component.
The addition of planetary oblateness and a rotating atmosphere couples the

in-plane and out-of-plane problem, but not necessarily to lowest order. In fact,
it will be shown that these effects, though appreciable, always enter to higher order,
so that the results of the two~dimensional nonrotating spherically symmetric analy-

sis to lowest order will remain valid.
4.2 Nonthrusting Three-Dimensional Flight

Consider first, the problem of nonthrusting three-dimensional flight in a ro-
tating atmosphere surrounding an oblate planet. The dynamic equations may be

. *
written in nondimensional form as

(4. 2-1)

o N

=‘é+%(d"-l£1 Q’_"gru,-}é:'tfuf\i (4.2-2)

1=~

12,

where r and v are the position and velocity vectors, p is the atmospheric density,
¢ is a three-dimensional aero-dynamic coefficient, Yw is a wind velocity vector

given as

Ny = R3¢ (4. 2-3)

where Q is the angular velocity of the atmosphere (assumed to be the same as the

angular velocity of the planet). The small parameter, € is the the ratio of the

2,
equatorial wind to the circular satellite velocity (or orbital period to rational period)
*

The same quantities are used to nondimensionalize mass, lengths and time as in
Chapter II.
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€, = ® Yo = 2 )/,E (4. 2-4)
39*9 %o

The pressure is, as usual, assumed to be related to position by the hydrostatic

equation.

;_ﬁ";_ - __g_(cl_g_zx(sg_xf\\ (4. 2-5)

where € 1 is the ratio of atmospheric scale height to planetary radius and

where a Coriolis correction has been included as the atmosphere is assumed to be

rotating with the planet. Further pressure is related to density by the equation of

state

iP = _q_
$ (4. 2-6)
The gravity acceleration vector, g,is the negative gradient of a potential, v, given as

(4. 2-7)

Vo=-[5- \.-("G\} 1";.1(35‘"7‘\'-‘\1-& (4. 2-8)

where JZ is the second spherical harmonic coefficient and L is the planetary

latitude. As might be expected Js is related to € 2 and is approximately

2
T & la' €. (4.2-9)

This simply states that the planetary rotation is the chief cause of the oblateness.
The additions of planetary rotation and oblateness have thus introduced only

one new small parameter into the system, rather than two, as might have been

originally surmised. A detailed analysis of the two parameter systems is over-
bearingly complex, if perfectly straightforward., Some enlightening observations are
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possible, though, without the benefit of the complete analysis.

The form of the hydrostatic equation still requires that heights above the
planetary radius be rescaled to order €, for a nonsingular solution. This will
again introduce an aerodynamically dominated problem where gravitational acceler-
ations do not enter to lowest order. The solution is therefore identical to the aero-
dominated solution of Chapter II. It is interesting to observe that to next order,
the effect of the rotating atmosphere should properly be accounted for, since €§>€1
for all known planetary atmospheres except Venus.{see Table I)

For densities of order € 1 aerodynamic forces do not enter to lowest order.
This implies that the lowest order problem is a Keplerian conic. To next order
the planetary oblatenss enters for all planets except Venus (as Eg > €, for these
planets). In fact, zero lift trajectories, perturbed by drag and oblateness, have
been extensively treated in the literature. (85)

If a local rotating coordinate system is used to express the dynamic equar
tions, as in Chapter II, there is no gravity contribution to lowest order. Further,
if a local value of g, and r are used tonondimensionalize the equations, the solu-
tions developed in Chapter II are valid to order € 1’ including the effects of oblate-
ness for motion in the planet vehicle-velocity-vector plane. The out-of-plane com-
ponent of gravity can be made of little consequence by compensating for it with a
lateral applications of lift.

When the velocities are the order of € ,, the order of the planetary wind
velocity, the problem is obviously better defined in terms of a coordinate system
fixed to the planet. In such a coordinate system, the dynamic equations take the

following form:

i‘ - N (4. 2-10)
N o= -2& b + & ate
- z (4.2-11)

where r and v are position and velocity vectors in the rotating coordinate
system and g is the negative gradient of a pseudo-potential associated with the ro-

tating planet,

v
<

(4.2-12)

o
n

1
13

where
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v = \:' - [ (;‘;)3 % (3sin™L-1) + SZ‘V"'casLl_] (4. 2-13)

L
v

The hydrostatic equation in this coordinate system is simply

| 74
E 3

= -f_ Y (4.2-14)
&, —

|

v
1~

Prior to considering the lower velocity flight, one interesting observation concern-
ing the aerodyanamically dominated problem will be made. For altitudes of order,
€ 10 and densities of order one, flight path angles of order one; or densities of
order €, flight path angles of order one, and velocities near circular velocities,

the following lowest order problem applies:

’\\r - ?_L ”2& (4.2-15)

L >4
.6

'f‘ - N ) = -4 (4. 2-16)

Vv
1~

Notice that both density and time may be eliminated to give

.
al
m0n

)

——

|

(4.2-17)

‘N

-
1o

which indicates that flight in this regime follows a path along constant pressure sur-
faces. Observing that the range covered is of order € for the large flight path
angle case, and of order € 12 for the small flight path angle case, then it is con-
cluded that the direction of g to lowest order is constant. Defining the flight path
angle as measured from the local g vector, one may integrate the equations to give
the solutions in Chapter II. The lowest order oblateness term has thus been

included. The next order term is of order, and may simply be written in only

€,
geometric dependent form as
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; A ) _
v = jl'%[ é‘%‘_ A_; (%\ir = s_u_&' (4. 2-18)

which may be integrated in its scalar form or its effect removed with the application
of lift, as the acceleration is always perpendicular to the velocity vector. So a so-
lution correct to order €, is obtainable for the aerodominated regime about an
oblate rotating planet with a real atmosphere in terms of the pressure and the geo-
metry of the planet.

Finally, it is seen from Eq. (4. 2-11) that there is no contribution of the
rotating atmosphere, at low velocities, in this coordinate system. This implies
that lowest order results previously obtained for (wo-dimensional flight at near
sonic velocities are applicable in this coordinate system, if flight path angle is

measured from the local g vector.

4.3 Thrusting Three-Dimensional Flight

The dynamic equation for thrusting three-dimensional flight in a rotating

atmosphere surrounding an oblate planet may be written in nondimensional form as
‘_'p_ =N (4.3-1)

N a9 *a, +E&4 &t (4.3-2)

where aa is the aerodynamic acceleration vector

[ 4
2a = LA 4,3-3
- = m (4.3-3)
and —ET is the thrust acceleration
a T
=T 7 0w (4. 3-4)

Other variables are as defined in Eqgs. (4.2-2). As might be expected, the addition
of thrust to the problem adds a third parameter, € 3 the ratio of the thrust acceler-
ation to the reference value of gravitational acceleration (possibly large or small).
A host of possibilities must now be considered, depending upon the relative size of

the components of v, g, 2 and 2
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Some of the possibilities are discarded by recognizing that for thrust to be
useful in aerodynamic flight,its velocity component must be of the same order as,or
larger than,the aerodyanamic drag. Further, if the lift-to-drag ratio is greater
than one, there is little advantage to thrusting in a direction other than along the
velocity vector. Lateral forces are more efficiently developed with the use of lift.
Hence, the thrust vector can be expected to be mainly along the velocity vector and
of a magnitude greater than the drag for aerodynamic flight.

For orbital flight where the aerodynamic forces are negligible the thrust
vector can be scaled only in reference to the local value of g. Cases where the
value of the thrust acceleration is small in comparison to g have recently been
treated extensively. (20,72) The intermediate range where thrust accelerations and
gravitational accelerations are of the same order is more difficult and has largely
not yet been treated in the literature.

The classical case of impulsive thrust, where the thrust acceleration domi-
nates over any gravity—and possibly aerodynamic—acceleration takes on an interes-
ting interpretation in the light of the method presented here. For € 3 large, the

lowest order problem is

{}(o\ - 'J‘ (0]

. 4.3-5
where the time scale is now of order GL . These can be integrated to give
the familiar result, 3
- = =T
“y — 2 (W %o
" 0} (4. 3-6)

6) ) t
Ly -fpa = Sh'fmd“‘ + Vg (#- 4)
The effect of g and 2 5 can now be included in the higher order problem as

w‘(l\ - d-(\\

4.3-7)
! ()Y ‘0\ (.‘ (
AW oz a iy e, (£0,87)

which are easily integrated to give,
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|
o
lr((-) - g(§(!(o\)*g”(!h\"{m\\‘l+
b (4. 3-8)
() *N. M A\"
T = S\: =

Consequently, the solution for "impusive" trajectories of relatively long duration

may be written as an expansion

< ¢(°\ _“ ‘(\ (l\
ey h Yt og - (D
()} o)
= N LN (4.3-9)
fw = X+ 2 4w

which correctly tends to the classical impulsive limit as € 3—'09 .
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CHAPTER V

OPTIMAL FLIGHT TRAJECTORIES

5.1 Introduction

A number of numerical methods are now available for the computation of
complicated optimal flight trajectories. (54, 75,76, 78, 81, 27) Analytical treatment
of similar but often simpler problems must therefore be prefaced with a few justi-
fying comments.

The structure of optimal flight trajectory problems is extremely complex.
The dynamical system and the associated cost functions are highly nonlinear. There
are numerous bounds on both the state space and the control. As a consequence,
many optimal trajectory problems have local extremals, trajectories that minimize
the cost with reference to all neighboring trajectories, but are not the absolute
minima. A numerical optimization scheme will always locate one of these extre-
mals, but can never tell if this is the absolute minimum, or even how many other
extremals exist,

Analytical formulation of the problem can often identify the possibility of
extremal solutions, even when the problem cannot be solved in detail. Numerical
investigation can then be made to determine the optimal trajectory from the admit-
ted extremals. When analytical solution for portions of the problem can be
obtained, they are valuable for checking existing numerical solutions, interpreting
numerical results and formulating more complex problems. But even short of for-
mulating the complete problem, information concerning the general structure of the
dynamical system can often be useful for the numerical investigator. For example,
the knowledge that a maximum range problem will never enter the high load factor
aerodynamically dominated regime, where range payoffs are small, would allow
dispensing with a numerically cumbersome constraint on the trajectory load factor.

Analytical investigation of optimal flight trajectories is therefore worthy of
pursuit. This has been generally recognized. (47, 60) The problem encountered
was that the dynamical system was far too complicated for analytical treatment.
Any ad hoc simplification of the dynamic system leads to a trajectory that violates
the assumptions made in the simplification. Here considerable care has been taken
in developing a systematic approximation procedure to avoid this difficulty.

An optimal trajectory associated with any lowest order problem will only be
presumed valid for that particular regime of flight. When the trajectory leaves

one regime and goes into another regime, another optimal trajectory problem must
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be solved. The two optimal trajectories then may be matched to give a trajectory
valid for the two regimes. This has the distasteful aspect of requiring that a given
optiinal trajectory problem be solved in a large number of regimes. The resultant
arcs must then be arranged in some combinatorial fashion to obtain the total tra-
jectory. The precedure's redeeming feature is that it gives considerable informa-

tion about an otherwise analytically untractable problem.

5.2 A Formulation of a General Flight Vehicle Optimization Problem

It seems advantageous to formulate a problem, substantially more compli-
cated than one can presently solve, in order to illustrate the features that are com-
mon to all the problems that will be considered here.

The dynamic equations describing motion of a flight vehicle in a rotating

planetary atmosphere are,(See Chapter IV)

t =N

N*3 -2exd 4a

(5.2-1)

where r and v are position and velocity in the rotating coordinate system,
2, is the angular velocity of the rotating atmosphere, g = g (r) is the pseudo gravi-
tational field in this rotating coordinate system, and a is the thrust and aero-dyna-

mic acceleration. The two components of a are given as,

. (5. 2-2)
&p % ,%‘ < Or =

3

where p = p(r) is the atmospheric density, m is the vehicle mass, c is a
three-dimensional aerodynamic coefficient supposedly less sensitive to, but not
necessarily independent of, atmospheric properties and velocity magnitude, T is
the thrust, either of aerodynamic origin and thus also dependent on atmospheric
properties and velocity, or of rocket origin, and thus at least independent of the vel-
ocity.

For the purposes here it will be sufficient to consider ar and 2 and to be
the control over the vehicle where each belong to a set AT and AA whose bound is

possibly a function of position and velocity, specifically

¢ € Ar (C, N, m)

(5.2-3)
@a € Aa (r X, m)
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Further, the total acceleration, a, is bounded in magnitude, and possibly

direction, due to the physical limitations of the vehicle and its contents. Explicitly,

& =ag + G, €< A {5.2-4)

For the optimal control problem, the dynamic equations must be supplemented
with an equation describing the variation of vehicle mass due to possible fuel expen-

diture. Changes of mass due to ablation of vehicle heat shield is usually negligible.
So,

V;\ =§N(!’~I“4T\
(5. 2.5)

where the r and v dependence has been included to allows for possible aero-
dynamic propulsion.

A general cost component of the state may be introduced as

% = b (0,7 a0 (5. 2-6)

which can include minimum heating, maximum range, minimum fuel ex-
pended, minimum time, or specifically all the problems that will be considered
here.

Then Egs. (5.2-1, 5, 6) are a set of equations sufficient to define a state of
the aerodynamic vehicle given suitable boundary conditions and specified control.

The associated Hamiltonian is then (See Appendix B.)

W= 3:1_\{' Y (3 -2 x4 +a7+d,)
(5.2-7)
2y Ptwoar a4+ x.l./{‘ v.ar)
IRCA R WL 3 Ao Fafl, 20T

where the operator (2 x) is taken as an antisymmetric matrix.

Now requiring that H be a minimum with respect to ar and a A yields a sur-
prising result. First as ar and 2, are related only by the constraint on the total
acceleration a, then for regions of state space when the system is not capable of
reaching the acceleration boundary, the minimization of H may be done independ-

ently for a , and 24" Further as 2r only enters fm and fo in terms of its magni-

T

tude ams then the direction of 2T is determined by the direction Of-)l-v' In faCt’iT is

- 89 -



anti-parallel tolv. (See Fig. 5.2-1.) This is the Lawden(zo)result extended to

this more complex system.

ate
(S

T

AT(r, v) - assumed symmetric
| ~ T  about zero value of 27

~—direction of ar that minimizes

a (possibly on the boundary of AT)

-

4»

T
the scalar product A " ar,

Fig 5.2-1 Optimal Direction for ar.

Then the part of the Hamiltonian that depends on an is

Hyo = = o1 * dmba(r,far)

ar (5. 2-8)

* A ‘. ‘!.!"dr\

which is an equation from which the scalar value of ar that minimizes H
can be determined.

The conditions for minimum H with respect to a, are somewhat simpler as
an does not appear in fo or fm but is complicated by the unsymmetrical nature of

A,. (See Fig. 5.2-2.)

A
velocity vector and __a_* - value of 3, that gives
axis of symmetry A . A
of Ap, minimum scalar product ) 2,
-l
h'A
2 A,(r, v, m)
“v

Plane of A and v
Fig. 5.2-2 Optimal Value of a,
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AA is symmetric with respect to an axis (the axis coincident with the velocity vec-
tor and the orientation of 24 about this axis is determined in the same manner that
the direction of ap was specified. Thus ijf\ always lies in the plane of v and }_V.
This determines the required "angle of bank" of the vehicle. But the determination
of the other two components of ¢ associated with the vehicle's "angle of attack" is
more difficult,

Notice that the optimal value of 24 EX is specified by the condition that a

plane perpendicular to A _ is tangent to A, at the point g._;"; . Determining a § in

terms of a tangent to the surface A, is a source of endless analytic grief in the liter-
(47, 60,52, 11)

ature This is basically because the aerodynamic coefficients, c,

for hypersonic flight velocities, is specified in terms of a Newtonian drag polar
whose trigonometric representative makes it near impossible to invert. (See
Appendix F.) .*

The method of circumventing this impasse, proposed here, is to consider
the set, AA’ only composed of a number of discreet points so that EA* can only
take onthesevalues. As this number may be made arbitrarily large, the loss of
generality seems unimportant. The advantage accrued is that the troublesome
tangency condition now becomes a switching condition. Specifically, for the two
components of )\v , )\vl, and )\v2 along and normal to the axis of symmetry of AA’ a

switching occurs when a possible change in 2, is related to Lv by

Ad
Yl S X (5. 2-9)
AN, AGn,

(See Fig. 5.2-4). Thus, the piecewise constant value of the aerodynamic control,
2, that minimizes H, is determined as a function of Lv.

The other advantage of this approximation is that if the dynamic equations
are integrable for constant aerodynamic coefficient c, then relations for the Lv
associated with the piecewise constant control may be obtained. They are simply
related to the perturbation variables around the solutions for constant c. Specifi-
cally, if a solution for r and v exists and is expressible in terms of v and r at some

later time,

* An interesting practical method of representing empirical drag polar data
for optimal control purposes has been suggested by Prof. W.E. Vander Velde. It
basically involves determining the relation between the angle of attack of the vehi-
cle and the angle between the drag polar's normal and its axis of symmetry (see
Fig. 5.2-3). As this angle is also the angle between the velocity vector and }_vfor

an optimal value of ¢, once A\ v and v are known ¢ is easily determined.
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Fig 5.2-3 An Emperical Method of Determining c* from }_V
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Fig 5,2-4 Switching Condition for a Discrete Drag Polar
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!((.\ = ‘f;(t(h\ ) Nk, & ) {’t\

{5.2-10)
:{(Qs\ = N—-| (! l*\\) g(\'g\‘ +. ) {-'_\
then
e )!‘t 3!"
] sy Sn || s
M | -
.S‘ (+) 3 & WL ST“"\ (5.2-11)
ot N,
and the relation for Lvl(l) is (see Appendix A)
r
NTLE SV W (5.2-12)
b = (530020 ) + (5020

So, complete specification of the trajectory, the adjoint variables and the
control in a piecewise fashion is possible for trajectories that have integrals for
constant values of the aerodynamic coefficient. This approach is obviously of little
advantage for numerical computation, but will be useful in the analytical investiga-
tion here, in determining the general character of optimal trajectory problems.

One other device that will be continually used is the elimination of time
from the system equations. Some care must be made in choice of an alternate inde-
pendent variable. It mustbe monotonically increasing for a well defined optimal
control problem. An alternate choice of variable that obviously satisfies this con-
dition is the cost coordinate for the particular problem. The preceding dynamical

equations, written with x, as the independent variable, are

w!
e T
. |

Mo 1:(41-,1,!\
Yy 412N +2
AKe Golar f, 4

(5.2-13)

|

m o bean e
du, L, (ar, b,
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The advantage that has been obtained is not apparent here, (except the possible re-
duction of the number of variables)but will be in the work that will follow. It is inter-
estingly observed that these equations define a general class of optimization pro-

blem known as "minimum time" problems, heavily studied in the field of optimal
control,

5.3 Optimum Aerodynamic Plane Changes

5.3.1 Introduction

Currently, there is a large interest in aerodynamic plane change

1 A :
1rnameuvers(7 » 79, 80) This is due to the sizeable advantages accrued in aerodyna-

mic plane changes of orbits over normal impulsive techniques. A cursory analysis,

indicating the reason for this advantage, will be given later.

5.3.2 The Aerodynamically Dominated Plane Change
Over a phase of the trajectory where the velocity is ‘the order of orbital
velocity and the pressure is the order of the wing loading, or, alternately where

1
(V2 -1) = 0(€ 2 and p = 0(€) the following nondimensional dynamical equations are

valid, to lowest order,

Ai . Cu cos Nt
IVM " 3 ${ ' (5.3.2-1)

where ¢ is the vehicle roll angle and ¥ a heading angle.

A rearrangement convenient for the optimization to be done here is

l\nN"
aln N

d
-

c_‘_:‘ G
dlwy ~ Co
Q\_& Co sm&

J\Y\N- Co CT(

)
I

(5.3.2-2)

1}

! . .
where v has been introduced for analytical convenience. The Hamiltonian

is
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C Cu 5‘“*
H o= Miaw’ = Xy Eiws% - 2 Co Ty (5.3.2-3)

As the independent variable. #nv does not appear in H, H is a constant. The associ-

ated adjoint equations are

J)\lnk"
dlnnN

0\_5.3 = My G S_‘_ﬂ& Sin X

(5.3.2-4)
dinw Co Cost¥
Ing
—_— -
dwn
We will seek a minimum loss of velocity during the maneuver so*
)\nﬂ'(lfp\ = -,0 (5.3.2-5)

The final velocity is unspecified, so

Hig¢) = H =0

The initial and final values of y are presumed given to make the problem wellposed.

Therefore, Ay =Ny #0. The final of Y is either given or
M (Ng) =0

For a minimum of H with respect to ¢, the vector (CL cos ¢, CLsin4>) should be
colinear and opposite in direction to (-xyg , = )_*} )} (See Fig. 5.3.2-1), So

*&h¢ ® }-*‘ (5.3.2-6)
€y Cos¥

*The possible zero value of the cost component of the adjoint vector will be inclu-
ded for correctness. See Appendix B.
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L 3 |3
H = MNw’/ - %—;(x: *?.‘l‘o Yt =0 (5.3.2-7)

Swtx
. . C, C
ForH to be a minimum with respect to _= , —CL is at its maximum value if
< D D
A
1 N 4
(Xg + _":- \ -#- o
Cos*ty {5.3.2-8)
2 w’o.2
But, notice that (}\Y + ———Z—) cannot be zero as )\wo # 0 for a well posed prot-
cos” Y
C
lem, so Yoru is at its maximum value for all v. To obtain an expression for the
D

optimal value of &, substitute Eq. (5. 3. 2-7) into Eq. (5. 3.2-6),and eliminate )\Y
this yields

sm.{, - S M A (5.3.2-9)
Co | MnN, wo¥
Mmox

This expression seems to be satisfied by two angles, but the ambiguity is resolved

by realizing only one angle satisfies the minimum principle (see Fig. 5.3.2-1).

Ay
. . : o
Eqgs. (5. 3. 2-2),and they integrated to determine the arbitrary constant X]'ﬁ_\;;

and the final velocity interms of the initial and final values of L4 and Y. A rather

With the control specified, it can be substitute into the dynamic equations,

simple observation will preclude this investigation.

Observe that the bank angle is symmetric with respect to Y = 0 and that as
+ «; - T
¥ ~—v - 2 2
\

¥—» o 4-‘ —~ 0, T
if the initial and final values of Y are zero, the only bank angle that satisfies these
conditions is -% .

The relationship betweeny and v for this special case is obtained from

Eq. (5.3.2-1) as

V-t - &

v
ln ',(J-‘o (5.3.2-10
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Butobserve that the original dynamic equations, Egs. (5.3.2-1) were insensitive to
how the plane of the maneuver was defined, as gravity accelerations did not enter.
So if the initial and final directions of the velocity vector are taken to define the

plane of the maneuver, the optimal control is simply to apply maximum

C
in this plane. The velocity change required to perform the maneuver is then
'C'l; P y g

simply

ol &Y
N E“M (5.3.2-11)
v'% = ¢

! .
where AV is the angle between the initial and final velocity vectors, a now obvious
result.

To make the advantages of aerodynamic turning over impulsive thrusting

similarly apparent, observe that the plane change accomplished with a single impul-

sive thrust is given by

W L_\L = ANV (5.3.2-12)
[ ZNo

(seeFig. 5.3.2-1),

/' (Cy, #in ¢, Cp cos §)

(e

Fig. 5. 3. 2-1 Optimal Direction of the Lift Vector

For a small plane change, Eqs. (5.3.2-11) and (5. 3. 2. -12) reduce simply
to

A«{,:C.hb_f
o. & AN,

¥
A“l’( = t‘:\}o

so that a vehicle with a lift-to-drag ratio of greater than one has the possibility of

(5.3.2-13)

performing a turn more efficiently by using lift to develop side force and propulsive




force to cancel drag.

Notice when the A v is the order of twice that necessary to escape the planet-
ary gravity field, an impulsive maneuver can be acoo mplished that takes the vehi-
cle to infinity, performs a plane change at no cost, and returns to the original

orbit, Using this to define the interesting limit of aerodynamic plane change maneu

vers gives
54’ Gy X
Cp Np

) ]

Ny-np o 2(24-A0)
e A (5.3.2-14)

b .55 G
Co
X
CL
So, for example, a vehicle with a Yoy of 2 can out-perform an impulsive maneuver
for plane changes of less than one radian. This is a much reported result,
(71,79,80)

unfortunately surrounded with an unnecessary amount of complexity.

5.4 The Minimum Velocity Lost Problem

5.4.1 Introduction

The objective is to control a lifting re-entry vehicle so that it looses mini-
mum velocity in flight to a prescribed altitude, and possibly a prescribed flight path
angle. This type of trajectory has been proposed (78) for a reconnaissance vehicle
desiring a close planetary encounter with minimum loss of kinetic energy. It also
has obvious application to a lifting weapon trajectory with an objective of reaching

some near surface target with minimum loss of velocity. Numerical verfication for
some of the analytical observations that follow may be found in Ref. (78).

5.4, 2 The Minimum Velocity Lost Trajectories in the Aerodynamically

Dominated Regime

The dynamical equations, correct to lowest order in €, for nondimensional

pressure, p, of order one, nondimensional velocity, v, of order on and flight path

N . . I 2 . L e e . = . - .
angle, Y, ot any order, are (or p=0U(€), v -1 =0(€), Y =U(€ “) 5 (See dections
2.5 and 2.9.)

M! - 1
ant
(5.4.2-1)
3 S N T
AN? T % Nt
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de ¥

dat Y A

where v2 has been introduced for analytical convenience. The Hamiltonian is

W o= )N't"")x(“zg“"‘\‘\‘XAf(smx =0

<o N‘l' N-gl (5.4.2-2)

It is both a constant and zero as the independent variable, v2 , does not appear on

the right hand side of the system equations and the final value of v2 is unspecified.

The associated adjoint equations are

dhwe’ de G s ¥ -hv'e

vt ( T T \N"i T

A)w BN «©s¥

— = ? 1z

At N (5. 4. 2-3)
A_}'P - o]

ave

The boundary conditions for Eqs. (5.4.2-1, 3) are specified intial and final values

, Y, and p or zero values for the associated ad joint variables
with the possible exception of the final value of the adjoint variable, A 2

of the state variables, v'Z

which may

be -1. For minirnum H with respect toc— the scalar product of ()\p siny, —%)\ )

C
and (CL —Ii) must be a minimum. ThlS has a simple 1nterpretat10n in terms of a
D D
a two dimensional Euclidian plot of the two vectors. It is seen from Fig. 5.4.2-1,
C
that minimum H occurs when (—1—, C—Il has the largest projection on
“p’ Cc

(\_sin¥Y, -1X0). It is then easily seen that the following possibilities exist:
p 172 Yy g
(1) When )\p sinY = 0 and A Y # 0 then

L

T is maximum for A\Y <0 and

C

Yony is minimum for \Y > 0 .
D
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1 C1
(Kpo sin v, '—l’ke) E—’ C
2 D D
1 CL
Fig. 5.4.2-1 Optimal Value of coTc—
D ™D
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(2) When )\p sinY #0 and )\Y = 0 then

1
is inimum for A_siny > 0
_CS minim o

<= is maximum for A_sinY <0
D P

C
(3) When )\ps'mY =0 and \

= 0 any value of L and L is admissible.
Y “p “p
(4) For )\p sin¥ = 0 and )\Y #0 over any interval of the trajectory,

dx
A =0 and —-g = 0 The final pressure is unspecified or,
P dv
dy CL 1
sinY = 0 and — = -% el —— = 0. But, condition (1) above,
dv D v2

C
requires L # 0, so this exists only when final p is unspecified
q _C; y p P ’

(5) For )\p sinY #0, A\Y = 0 over any interval of the trajectory,

d)y os ¥
ant = >e &;{:z =0
M =0

which is only possible if cos¥Y = 0. (A vertical trajectory.)

(6) For )\p sinY = 0 and A Y = 0 over any interval of the trajectory,

)"f -0 (unspecified final p)
or
sin¥=o0
‘1‘ - -\_ -c—\- 'L" -0
Nt T Co N
and
’¥ =0
Obt = = A CD___S ¥ -
ive ¥ G

(unspecified final Y)
which is only possible if the final Y and p are unspecified, a poorly

posed problem.
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(7) When )\p sinY # 0 and )\Y #0 it is convenient to make the assumption

C
that the (-Cl—- , -CL) vector can only taken discreet values. Then
D D

and integrable equation for (hp sinY, )\Y) may be obtained by com-

bining Eq. (5.4.2-1) and (5. 4. 2-3) to give

d>y cosy
2 Ny —
A% &% Co

or for piecewise const. values of CL’

’\"\H - )\81\ =Z'\_’_f_o (SW\\‘!H\ - Sm}{,.\
Qn

where (5.4.2-4)

It is seen from these conditions that the vehicle:

C
(1) turns at max. rL— to a specified Y if the final p is unspecified,
D

C

{2) turns at non-max. (—:-—L— for final p specified, final Y unspecified,
D

C
passing through max. Cl"— when Y = 0.
D

(3) stops turning and descends or ascends at min. CD when Y::!:%
when final p specified and final ¥ is unspecified.

(4) conducts a lifting up-down or down-up maneuver specified by

C
Eq. (5.4.2-4), passing through max. Ci when Y = 0, to meet fixed final
D

values of p and V.

5.4.3 Minimum Velocity Lost Trajectories in the Aero-Gravity

Perturbed Regime.

All optimal trajectory problems will have a particular sample structure in
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this regime. The optimal value of the control will be a constant value of CL and
Cp. This minimum velocity lost problem will serve to illustrate this result.

The first-order perturbation equations describing flight for v~ = 0(1),

Y=0(l), p=0(€), h=0(€) are

4—0—‘ = C E?-t * -

» SN, A1
A___.B o (.0_550( \‘ l\ (5.4.3-1)
do z v N

where p has been introduced as the independent variable. These equations
are suitable for system equations for an optimal control problem if p is restricted

1
to monotonic variation and the fictitious variable p is introduced by the equation,

P
o S \ (5.4.3-2)

is then -

2 ¥o
H = )\t ((pg:i“.‘o + -‘—‘\-b }ug(% "‘“;; (';;:-\\x

*

The Hamiltonian associated with Eqs. (5.4.3-1 - 2)

(5.4.3-3)
‘i'}ar'

which is independent of p and thus constant. The associated adjoint equations

are,
A,(, ’ d,? (5.4.3-4)

! s
to that )\P variation with p is specified by Eq. (5.4.3-3). The bounda‘.ry conditions

1
are specified initial and final values of p and Y, or the associated )\p and )\y zero,
with the additional condition that H = 0 if either the initial or final value ot p 1s not
. 2 .
specified. As we are seeking a maximum final v~, Av £ -1 (or possibly 0).

Requiring that H be a minimum with respect to the control gives the surpris-

ing result that CL and CD are constant, as both )\VZ and N . ., are constant. (See

Fig. 5.4.3-1)
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constant vector

Fig 5.4.3-1 Optimal Control for Minimum Velocity Loss Aerogravity
Perturbed Problem

If the final flight path angle, Y is unspecified and occurs in this regime, then

\ cos Yo = 0 and the optimal value of CL is zero.

5.4.4 Minimum Velocity lost Trajectories in the Small Flight Path

Angle of Low Density Regime

The behavior of the dynamic equation in the low density regime is som?what
1 1
different if flight path angles are order, € 2. For vz' =0(l), A =0(€), Y=0(€ i),
h = 0(€), the perturbation equations, correct to lowest order in Y and order € 2 in

vz"are (See Section 2.9.)
I ew
a» ]

‘L‘t = g-zl\_.‘_\,

A? ' N,*

(5. 4.4-1)

-

As Y might well go through zero, making p a non-monotonic variable, the equations

must be rearranged in the following form:
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avt
4 3
- = — 5,4.4-2
INT GNE ( )

\ ! \
e ‘"\ia—t-(\- <) =

Ne Nt PGy N©

These are suitable system equations for the optimal control problem.

The
Hamiltonian is then

{ s
H = )\N“' -+ AUQ {* c';ig Y+ A‘l'ée; é‘u(i-l:—f.‘\'p‘?ﬂ'\ (5. 4. 4-3)

and is both constant and zero as the independent variable,

vZ, is also the cost. The
adjecint equations are

JM \ \
—' - V- =\ -
Ty = Ml PAR TN A
Y )
AT NS
(5.4.4-4)
A—b""-; o
Nt

The boundary conditions fix the initial and final values of p and Y or the

respective values of }\p and )\Y are zero. As a maximum value of the final velocity
2t

is sought, )\V o = -1 (or possibly 0).

C
Requiring that H be a minimum with respect to C£ andcl—- gives the con-
D D

dition illustrated in Fig. 5.4.4-1.
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Fig. 5.4.4-1 Optimal Control for Minimum Velocity Lost in

the Small ¥ Regime, an
Notice that no arc where XY: 0 exists because for )\Y and —— = 0 on any

dp
arc requires )\P = 0. But for both )\p and )\Y to be zero would require )\VZ' to be zero,
if H=0. As the complete adjoint vector cannot be zero, no such arc exists. Fur-
ther, if the initial velocity is subcircular so that (1 -V—lz—)is negative, the condition
o
N _ =0 can never exist, because the adjoint equation for A
(1-

v is divergent. If

> ) is positive, the value of )\Y can oscillate, so multiple positive and negative

Vo
values can result.

Togain some insight into the structure of the problem, consider the case

when (1 ——IZ-) = 0. )\p is then a constant. By examining the Hamiltonian,
vo
C

Eq. (5.4.4-3), it is seen when Y = 0, ?i is at is limiting value and is the same
‘D

sign as xy. The adjoint equation may be implicitly integrated as
R
A 3
M Mgyt i g“:f (5.4.4-5)
‘. T‘ <o
o N!

CL
el ) at least once.
D

which indicates that )\Y can pass through zero (and thus

If the final value of Y is unspecified then A, = 0 is the final value and no switchings
occur. These conditions may be interpreted to mean that a vehicle entering at cir-
cular satellite velocity will at most have its trajectory turned up and down once to

meet some specified final p and Y with minimum loss of velocity.

5. 4.5 Minimum Velocity Lost Trajectories in Equilibrium Glide Regime

The dynamic equations previously used are adequate for describing flight at
small flight path angles where the flight path angle is changing rapidly. For small

flight path angles that are varying slowly the following dynamic equations are valid,
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to lowest order in €

ay (5.4.5-1)
\
< & - (L - )3
o = 2 ( g \ P
These are simply algebraic equations relating vZ, P, CL and CD.
|
’.vr?. - e
Cu (5.4.5-2)
— P+
: P
e =2 & (‘_" \
v (.l.( 1‘?* )
(5.4.5-3)

The first equation, Eq. (5.4.5-1) implies that for a maximum v'2 at a given p, CL
should be as large negative as possible. The second equation gives the small flight
path angle necessary to maintain this condition.

These equations serve to define the upper limit boundary on all capture man-
euvers, that is, the maximum velocity that a vehicle may have and still be kept in
the close proximity of a planet with negative lift. Thus, any vehicle with super cir-
cular velocity desiring to be captured must dip into an atmosphere and fly up to the

boundary from below.

5.5 The Maximum Rggge Problem

5.5.1 Introduction

An obvious objective in the control of a hypervelocity flight vehicle is to ob-
tain maximum range. Some insight into proper regimes for the formulation of this
problem may be obtained from the form of the dynamic equation. Observing that a
nonthrusting vehicle has an amount of total energy that is expended in the pursuit of
range, it is natural to express the rate of change of this energy with respect to
range, For v2 =0(1), h=0(€), Y =0(1), 8 = 0(1), p = O(l)this equation is

T
N e
J(_:_e__m\\\= - g'-c{-;(‘*‘\\ (5.5.1-1)

This equation must have 8 or p rescaled, which implies that there are only range

gains the order of the planetary radius when the density is order € . Then for
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v%=0(1), h=0(€), Y=0(1), 0 = 0(1), p = O(€), to lowest order, the equation is

. l'l
é“—r = - Q’-—L (5.5.1-2)
a6 cosY

This implies that there are no lowest order range contributions due to the vehicle's

potential energy.

Two of the maximum range problems will now be investigated all in the

low density regime.

5.5.2 Maximum Range in the Equilibrium Glide Regime

A particularly simple maximum range problem is maximum range in equilib-
rium glide. The dynamic equation for Y = 0(€), v> = 0(1), p = 0(€), h = 0(€) with ©

as the independent variable are (see Section 2.7)

2
M = —'C.Dgﬂ-t
6
\ X (5.5.2-1)

Substituting the value of p given in the second equation gives

AV‘ - Cb 2
. c\_“r -9 (5. 5. 2-2)

Now introduce a fictitious range variable,

do'
48 {5.5.2-3)
The Hamailionian is then,
R= Mgy ¢ >‘~"-(é!’(ﬂ"'~ 1) =0 (5.5. 2-4)
.

The adjoint equations are
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dXrg’

‘d—‘e =
At _ C
™ - - Nyt _E'i (5.5.2-5)

The boundary conditions are a fixed sz , a free final 6 which requires that H=0,

and a maximum 0' which requires that )\e' = -1 (or possibly zero).
C

To show that C—I:- at its maximum positive value, satisfies the necessary

conditions, notice that Vv -1 is always negative. So that if N2 is negative,

C
'(T]:— = C_L\max minimizes H. If sz is initially negative it will remain negative
D D
C
(see Eq. 5.5.2-5) so that E£ i ony \rnax is a possible extremal. In fact, it is
D D

the only extremal in this regime because ng = 0 is not admissible, and A2 posi-
tive requires CL = 0 which takes the trajectory out of this regime. The range

covered, as given in Section 2.7. is

-t
9.:1{(.:_‘ \l,. [._....\ il —\ (5.5.2-6)

-ar?
> lwax L 7%

5.5.3 Maximum Range in the Aerodominated Low-Density Regime

When flight is in the low density, near orbital veloc1ty regime, the situation
is slightly more complicated. For Y = 0(¢€ 2), v2 -1 =0(¢ 2), p = 0(€), h=0(€)
the dynamic equations are
4o _ _
'L P
¥ _1g
J”! = T C
L L
= ——
N <
Nz’
At

(- 4

(5.5.3-1)

The Hamiltonian is

H=Xg (~ ""‘\1')\3(' \ (5.5.3-2)
*rp () Y dpe =0
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The adjoint equations are

Do
aNt
Ay | xe
AN G
JX - - _l_ (5.5.3-3)
Dy - -5 S
aN o’P
d vt
ant
CL 1
Requiring that H be a minimum with respect to T T gives the usual condition,
D D

(see Fig. 5.5.3-1).

The control can be considered piecewise constant and the system and adjoint
equations integrated. To gain some insight into the structure of the problem, con~
sider CD = constant and CL variable between a ""positive and negative limit. This is
valid for a low-1lift drag (Apollo Type) vehicle.

Then for LY #0

C\.=C\.M“ >‘>D‘ (5.5.3-4)

Cu ® “CL i Ae ¢ °

But )\Y cannot be zero over any finite segment of the trajectory (see the adjoint
equation), so the trajectory is of a skip variety. It clearly leaves this regime and

enters a Keplerian regime.

7

Fig 5.5.3-1 Optimal Control for Maximum
Range - Low Density - Aerodominated Problem

A

6

SN W Y
(lp’)’ p>’% v

’
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Maximum range in the Keplerian reg1me is easily handled by observing that
there is an optimum initial flight path angle Yol associated with a given initial

velocity, Vi to obtain a maximum range, 6" . Specifically, -0

tan X: - \/ B -'

(5.5.3-5)
where the maximum range is given by
M—t
\ °
ton e' -3 (5.5.3-6)
Yi-nz

See, for example, Ref. (102) 1

For (1-v ) = O(EZ) the optimum initial flight path angle Yo * 0(€4). The
velocity lost in the skip is

ANE = 35‘2 AY = 0 (€F)

(5.5.3-7)
and the range gained is,
a8 AN
"
\ (5.5.3-8)
0 (eN)
But the range gained in the Keplerian regime from Eq. (5.5.3-7) is
fon 8% = 0 (3 7w)
on e = O ( T av'l
(5.5.3,9)

k
& =00\

So the dominant range is gained in the Keplerian regime with minimum velo-
city lost skips conducted to reach the proper flight path angle. Minimum velocity
lost in the aerodynamically dominated regime were treated in Section 5. 4. 2. Itis
sufficient for the purpose here to note that turning is done at maximum C /C
Y = 0 and p unspecified bottom of the trajectory and then at non-maximum CL/C
meet the final specified value of Yo * for maximum range in the Keplerian regime.

Two widely different maximum range trajectories have been identified. One .

an equilibrium glide, the other a Keplerian free-fall connected with aerodominated




skips. It is interesting to note both types of trajectories have been reported as the

results of numerical computation. (75, 81)

5.5.4 Maximum Range in Near Sonic Fli@_t

A problem of interest for a vehicle, in sonic flight, attempting to obtain a
landing site, is the maximum range problem. The dynamic equations for small
flight path angle sonic flight or forp = 0(1),v2 =0(€)Y = 0(€) in nondimensional form,

are (Section 2.10).

dr Nt

at 2z
(5.5.4-1)
t.
o = ¥,
T
or eliminating pvz, they may be written simply as
dnr <y
- 2 = —- 5.5.4-2
a+ < ( ’
The range equation is
46 = N~ (5.5.4-3)

ar
The optimal control problem could be formulated, but it is completely avoided by

eliminating the independent variable in the usual manner, vis.

N 2¢
IB bt E': (5.5. 4-4)

Thus for small flight path angle the maximum range for a given loss of velocity is
obtained by maintaining the maximum CL/CD' The expression for the maximum

range is then

C e
Q- 6, = | (T4
e Cb\m; (5.5.4-5)

1
As the vehicle will decelerate from velocities order € 2 to velocities order €, the
range covered in this regime is order €. This is order € smaller than the ranges

traversed in the hypersonic regime.

5.6 The Minimum Heating Problem

5.6.1 Introduction

A vehicle attempting to establish a satellite orbit, or land, may enter a
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planetary atmosphere to lose part of its kinetic energy. A natural objective of this
type of flight path is to minimize the portion of the kinetic energy that is transferred
to the vehicle in the form of heat. Some general observations about the structure of

the problem, not widely understood, can easily be made.

The heating rate may be expressed in the general form (see Appendix F)

A {
V= C N (5.6.1-1)
it el

The rate of change of the vehicle's energy with time is,

= -GV
ar (5.6.1-2)

The rate of change of vehicle energy with energy absorbed is then, for h = 0(€),

3
WV - Zwm) L et
49 ZCQ(('“

or to lowest order in €

=t

N

(-2 ANt >

dq Q

For a fixed change in kinetic energy, the energy absorbed by the vehicle is

only a function of the density profile of the trajectory (if i # 1),the value of (CD /CQ)

- . (5.6.1-3)

~Ni-

and the value of i. The value of i is determined by the type of heating being con-

sidered (see Appendix F). For convective heating i= -12 and for radiative heating

i 5 - By inspection of Eq. (5.6.1-3) it is seen that minimum convective heating

a*°

trajectories are associated with large p and minimum radiation heating is associ-

ated with small p. As the values of jare -% and 10 respectively, for convective and

radiative heating, the radiation heating occurs at high velocities, and the convective

“Some investigators (8, 96), have suggested a value of i = 1 for both total convective
heating and radiation heating, If this is the case, the trajectory is insensitive to
the density-velocity profile and the optimum value of CD /CQ is it's largest value

for the complete trajectory. Even values of i suggested above, seem to offer so
little density pay-off that typical minimum heating trajectories spend much of their
time at near maximum Cp /CQ. (See Ref. (76).
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heating occurs at lower velocities. Thus, a minimum heating trajectory is charac-
terized by a high-altitude-high-velocify minimum radiation heating phase followed
by a lower velocity low altitude minimum convective heating phase.

In the low altitude phase aerodynamic load factors are quite high, (order
1 /€) so that load factor constraints must be considered. These factors make real-

istic minimum heating trajectories analytically the most difficult to treat.
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CHAPTERVI

GUIDANCE TECHNIQUES

6.1 Introduction

In the preceding chapters we have dealt extensively with a procedure for ob-
taining a uniformly valid analytic approximation to flight trajectories. As guidance
applications represent one of the most stringent uses of such solutions, it is appro-
priate that methods of implementation be discussed.

It is significant to observe that the major advantage of using an asymptotic
expansion for guidance applications is that one obtains an analytical solution whose
accuracy is both uniform and estimatable. This, hopefully, precludes the extensive
numerical investigation commonly made to estimate the accuracy of analytical solu-
tions obtained in a less systematic fashion. It should also reduce the tailoring of

the guidance system necessary to cope with regions of poor accuracy,

It is important to point out that the method of systematic approximation pre-
sented here does not always reduce the dynamic equations to a set tractable for
analytical integration. But numerical integration of the reduced set is always pos-
sible with higher approximation and thus more accurate solutions expressed in terms
of these numerical solutions. In this case, one has lost the advantage of analytical
expressions for the lowest order solution but retained the option of obtaining a solu-
tion of a prescribed degree of accuracy perhaps in a simpler form than a raw inte-
gration of the trajectory.

Independent of whether one chooses to handle these analytically difficult por-
tions of the trajectory in this or more conventional methods (for example, a least
squares fit), they may be matched or patched to the portions of a trajectory for
which one obtains analytical asymptotic expansions. The combination should repre-
sent a relativcly simple and accurate method of describinga complete flight trajec-
tory.

6.2 Explicit Guidance Schemes(87)

The most obvious way to use an analytical solution in a guidance scheme is
to explicitly compute the controlnecessary to take the vehicle to its desired objec-

tive. For example,if the state of a system is described by the differential equation
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kb x,un o+ £q e, ) (6. 2-1)
where a first approximation

- (o) o>
] =% (6. 2-2)

is valid. Then if a solution to Eq. (6.2 -2) is given by

o) Loy
X 2 Ky 4 )

where the control u(t) was chosen to satisfy some objective and X is final
value of the state at time tf, then Eq. (6.2-3) represents an expression for the con-
trol, given the current and final values of the state and time. It is clear that this
control misses the final state with an error that is order €, if the control is only
computed once, as a {unction of the initial state. But the error is arbitarily small
if the control is continually computed as a function of the current state. If this com-
putation is complex, it may be avoided by computing instead the control necessary
to "fly" the vehicle down the approximate solution. Specifically, if the approximate
solution, Egq. (6. 2-2) is substituted into the original differential equation, Eq.(6. 2~1),

the following equation results:

;,‘(o\ [(}] (o)
S L R N

This is an algebraic expression for the u(t) as a function of the current state. It is
important to observe that the control computed in this manner is often not realizable.
This simply states that the vehicle cannot fly the approximate trajectory with its
real control, The previous method does not have the deficiency.

All of these methods perform somewhat poorly with the addition of uncertain-
ty into the system. The explicit computation of the control based on the initial value
of the state not only misses the final state by order € , but, takes no account of
inttial uncertainties or possible "noise" driving the system away from the final
state. A continuous computation of control based on current estimate of the state
may spend large amounts of control chasing a randomly forced state vector. This
is especially true near the final time when the control is invariably missing the
final state due to random errors. A common method of correcting this erratic be-
havior is to only allow the control to be calculated for a finite number of sample
intervals. This compensates the over control of the continuous control scheme with

the sluggish behavior of the.pre-computed control scheme. The character of the
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noise and the desired accuracy is accounted for by the choice of the sample times,
A strategy, probably closer to the optimal one, * is to choose the control to
drive the system to an error ellipsoid rather than a point in state space. The rela-
tive size of the error ellipsoid should be chosen to represent the expected uncertain-
ty in final state, conditioned on the current estimate of the state, and the character
of the noise driving the system. The absolute size of the ellipsoid should reflect
the final error tolerance. This type of system will react sluggishly when its know-
ledge of the final state is poor and the tolerances are lax but will react rapidly when

the knowledge of its final state is good and tolerances are tight.

6.3 Nominal Guidance Schemes

Normally, analytical solutions are not considered suitable as nominal solu-
tions for nominal guidance schemes. This is because errors introduced by the
inaccuracies in the nominal solutions may be as large as theerrorsintroduced by
noise in the system. Though the system noise may be handled in a rational manner,
there is no systematic method of treating inaccuracies in the nominal solution.
Because a scheme for computing the solution to an arbitrary degree of accuracyhas
been presented, a method of theoretically circumventing this problem is available.

The method is basically predicated on analytically computing the nominal
trajectory to an accuracy higher than is required for the system performance. The
practical execution of such a computation may prove overly complex; but it offers
the hope of being able to compute nominal trajectories in flight. This would remove
one of severest restrictions on the use of this type of guidance scheme, their inflex-
ible dependence on precomputed trajectories. A detailed example of this nominal
guidance philosophy follows:

Nominal guidance schemes, as based on linear regulator theory, have a par-
ticularly elegant, if somewhat artificial statement. (78, 99) It is only necessary
that this statement be placed in a context suitable for use here. Consider the non-

linear system

d ""g('!‘ a realhn (6.3-1)

with a valid first approximation,
)
“_ - Q (mlﬁ)' ‘tlb‘x (6' 3_2)

and its solution,

“The problem of optimal control of a nonlinear system in the presence of noise has
a rigorous formulation, but unfortunately few solutions. See Refs. (88, 89).
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(6.3-3)
written in terms of the desired final state, Xgs at the final time, tf.
The next approximation is
O SLLR Y toh
X =§\'§ *;\‘.5 £ (2, WY 4oy
- Py 2 \s - X
- ) -
¢ gt (6.3-4)

where the control, u, is assumed to deviate from E(o) by an amount
6u, which is order €. It is also assumed that the system is driven with order €

white noise, w(t). The mean and covariance of the noise are assumed to be

ELwm] =o
€ Lwris gwﬁ = Q@S-

(6.3-5)
The difficulty that occurs in the application of linear regulator theory is
associated with the non-zero mean value of &(E(O), E(o))’ and thus 5(1)' A zero
mean state variable may be obtained by simply realizing that the effect of 5(_}_{_(0),5(0))
on the system is computable. In fact, it is the normal second approximation when
noise and variation in the control are not included. It is given as the solution to

the linear equation

Y DENCRY
= A + 4 (4%
- | = = I= (6. 3-6)

*u\' _ }E \
*(0)

{

/
Subject to the boundary condition, x 1)(tf) = 0, this solution can be written explicitly

as

m/

¢
Ay o= S @(*.ﬂ %l’}_m‘gm).{f‘ (6.3-7)
bty

where

[T)
¢ = M ag
Lo(t,4p) ;,{c
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A zero mean state variable is then

/
Gh - At = x (6. 3-8)

which clearly satisfies the linear differential equation,
6k = Fy Sx 46 () Sy +W (6.3-9)

To conform to a standard notation, the following matrices have been introduced:

]
|5‘°m
(6.3-10)
G@) = 2&'
M lm

The covariance of 6x will be indicated by P(t)

E[S@(k\ Sn “'\r] =P (6.3-11)

where its initial value PO is presumed known. It is now only necessary to
proceed with a straightforward statement of linear regulator theory.
A measurement of 6x, 6z, is assumed to be related to §x and corrupted

with white noise, v.

- “ + A
(2 () = Wi 82 + A 6,312

1
The noise, X(t)' is assumed to have zero mean and covariance, R(t) 6(t -t ) and to

be correlated with w(t).
- T . ,
Einm van] = Ry S (k-
(6.3-13)
€ [rywe T 1= M S-t)

The control du is picked to minimize the expected value of a quadratic cost

function,
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4
(6. 3-14)

+29a v N({\SL}T + § L*T Bm u \J-'\]

To determine this optimal control 6 u one must first form a minimum variance
{maximum likelihood) estimate of the state, 6x, given by the Kalman-Busey, (90)
Battin, (17 Gauss(gl’ 97), Filter

Sé = F(ngg *Gu\‘.‘t + K('c\ (Sf ~-H S':"] (6.3-15)

where

T -l
Kigy ¥ { PeeyHw +Hw ) &ty
(6.3-16)
pm = Fu\ P(em-Pm Fu: - (PwHJ) * M \Hu\(n{t\' l’h\P(t\\*’Q(t\

Then the optimal control, du, is linearly related to this estimate of the state, 6 x,

by a linear time varying gain,

Say = -C@t) S'gm (6.3-17)

where the gain matrix, C(t) is given by the solution of the deterministic
state regulator problem

Ceey = BT &y S
(6.3-18)
L] r -
S ) = - SOFw - B Sk (StnGo N B in (Nt +6la St - A

In the flight dynamic problems considered here, the noise driving the sys-

tem is usually correlated. This corresponds predominantly to uncertainties in

atmospheric density. The extension of the preceding formulation to correlated
noise only requires that the linear system be augmented by the addition of a shaping
filter driven by white noise. This has been treated by Bryson(gg) and Deyst. (92)

In some case, a quadratic cost function seems inadequate. Specifically, in

hypervelocity flight problems velocity lost during turning is related to the absolute
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value of the turning angle. Potter and Deyst (94) and Wonham(ss) have treated the
linear regular problem with nonquadratic cost functions.

Thus, this theory with the included capability to handle correlated noise and
nonquadratic cost function seems capable of handling a large class of problems en-
counted in the guidance of a hypervelocity flight vehicles about the nominal path.
The small contribution made here is to show how uniformly valid analytical expan-
sion can be rationally used with this theory. This offers the possibility of analyti-
cally stored nominal trajectories with the associated versatility usually ascribed

only to explicit guidance techniques.
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CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

7.1 Summary

This thesis has applied the method of matched asymptotic expansions to the
problem of analytically describing flight trajectories. The dominant emphasis has
been directed toward trajectories of the hypervelocity or atmospheric entry class.
New and previously known analytical solutions for flight trajectories have been pro-
duced in one systematic procedurethat is capable of identifying their region of val-
idity, proceeding to higher order more accurate solutions, and combining these
solutions to obtain expressions valid over several regions of interest.

Specifically, the region of validity of all first approximations to the flight
dynamic equations have been carefully identified. The analyses of Allen and
Eggers(s’ 9 Chaprnan(4), Shen(zs), Lees (7 and Arthur(ll) have all been shown to
be rational approximations within this context., Their region of validity and accur-
acy has thus been established. The systematic procedure by which they may be
extended to higher order has been demonstrated. Loh's "second order" solution
has been shown to be a multiple regime "first order" approximation that could be
corrected to a rational lowest order solution.

Two expansions have been matched to produce a composite expansion valid
for a currently interesting class of lifting trajectories. Numerical results have
been presented showing that this expansion is in excellent agreement with exact
integration, for the types of trajectories for which it is presumed valid. A com-
posite expansion is thereby illustrated to be relatively simple analytical solutions
with predictable accuracy and range of validity; a result of considerable importance
for guidance applications.

The three-dimensional problem of thrusting flight in a rotating atmosphere
surrounding an oblate planet has been treated. The problem of two-dimensional
flight in a non-rotating atmosphere surrounding a spherically symmetric planethas .

-been shown to be systematically imbedded in this larger three dimensional problem

Simple but valid models for optimal flighttrajectory problems have
been introduced. An optimal plane change, some meximum range and minimum veloc-
ity lost problems have been worked. Observations concerning the structure of

these problems and the minimum heating problem have been made.
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Methods of incorporating uniformly valid asymptotic expansions in guidance
schemes have been suggested. Specifically, the advantages of uniformly valid solu-
tions have been presented and methods of performing both explicit and linear nominal

guidance with these solutions have been demonstrated.

7.2 Recommendation for Future Study

Only a small fruition of the potential application of the method to the flight dy-
namic problem have been made in this work. Higher order solutions, including the
practical and important effects of rotation atmosphere and planetary oblateness,
2walt computation in all flight regimes. Matching of both lower and these higher
order solutions, for the numerous regimes of flight, awaits completion.

Analytic computation of optimal trajectories is difficult, due to the general
non-integrability of the adjoint equation, except in a piecewise fashion . But inter-
pretation of numerical results,in terms of models produced in this context, seem
both fruitful and useful. A host of numerical optimal trajectories await such simple
interpretation.

Application to guidance problems seem the most promising, This technique
offers the possibility of formulating analytical guidance schemes for which accuracy
and range of validity can be estimated and extended. Precise tailoring to specific
application, though complex, is straightforward and holds the promise of excellent
results,

A closely related topic is the utilization of lowest order analytical solutions
in numerical integrating techniques of either a variation of parameters or Encke
type. Such an implementation would certainly produce fast and accurate integration

for numerically difficult hypervelocity flight trajectories.

Other perturbation techniques are available, specifically, the method of
multiple scale. It is capable of handling a whole class of oscillatory trajectories

for which matched asymptotic expansions seems particularly poorly suited.
7.3 Conclusions

In identifying the significant contribution of this thesis, it would be presump-
tious of the author to claim ultimate originality for much of its contents. Certainly,
most of the observations about the flight dynamic problem made here, have occur-
red to many investigators before. But scarcely, if ever, have so many results
been the output of a single investigation. This can in no sense be attributed to the
skill of the investigator but rather to the efficiency of a systematic mathematical
technique not previously applied in flight mechanics. The major contribution of

this thesis is then the demonstration of the usefulness of the method of matched

asymptotic expansions to problems in hypervelocity flight mechanics. It is the opin-




ion of the author that this thesis only initiated investigation in an area where both
significant amounts of useful and interesting results remain to be obtained, and an

efficient technique for the production of these results is currently available.
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APPENDIX A

VECTOR MATRIX ANALYSIS

A.1l Vector Differential Equations
A set of n nonlinear equations may be conveniently represented in vector

ES
form as

by
(A.1-1)

=

R-

with a solution
(A.1-2)

ﬁ = ,.x. <§0)*'*.\
where x,are initial conditions given at some time t,
tional equation" governing small perturbations about some solution to the differen-

Note that a "varia-

tial equation may be written as

: St
x| 7 (A.1-3)
of
is an n x n matrix of time varying coefficients evaluated along

where gg

the given solution. The solution to Eq. (A.1-3) may be written in terms of a tran-
sition matrix, @ (t, to) as
{A.1-4)

VX = § (4 %% (k)
where @ (t, to) satisfies the equation

YE e -
>t - Fra é(#,i-.)

(A.1-5)

*Notice that time may always be artifically introduced into f (x) with the equation
This is the approach that will be consistantly used here.

kn =1,
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and

Fiey = %-f.‘\

i; (to, %) =1 (A.1-6)

5 (3}

If the solution to the original nonlinear equation is known in analytical form
then the transition matrix may be obtained directly. If x = x (50, t, to) is the

solution, then

ba

"
v
foed 114
o
X
o

° (A.1-7)

Comparing (A, 1-4) with (A.1-7) reveals that

A
§. TR AR b 1%, ¢, b

(A.1-8)
X,
The adjoint set of equations for (A.1-3) are
: YE\T
Y = - (=) ) (A.1-9)
which have the convenient -property that
d [T CRT N 4 SxT Y
I*(g! A) = %% 2+ %x ) o (A.1-10)
or
% 5‘- i constant (A.1-11)
Using this relation between t and to,
T T+ ¢
S?_‘ () é ) 2 % D Z‘(Eo\ (A.1-12)
and the propagation relation for 6x, Eq. (A.1-4)
Sy = §u‘§,\ & (e (A.1-13)
gives the result,
T T T
Sﬁ ‘*o‘ & (*,k&) é ((\ = S!({‘\ ): (¢ (A.1-14)
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which must be valid for arbitrary, 6x(t

.
2Lt = @(k,t.\ 2k
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APPENDIX B

OPTIMAL CONTROL THEORY

B.1l The Necessary Conditions of the Pontryagin Minimum Principle

Given a system of differential equations with control u

A =£tz,v_~\ (B.1-1)

that has a cost component x_as the fhirst component of the state vector x. Then
assume there exists some control u "(t) over the interval of time to to tf that mini-
mizes the cost X at the final time, tf. Any nonoptimum control, u(t), applied over
a vanishingly small interval of time At must produce a perturbation away from tra-

jectory given by

S (6N = (% -x*\&¢

fv

= (e - bt u YAt (B. 1-2)

1>

The perturbation at the final time caused by any admissible control of or a pertur-
bation of the final time must lie on or above a hyperplane passing through the final
state (see Fig. B.1). If this were not so, the controls producing the two perturba-
tions lying on both sides of the hyperplane could be combined to produce a trajectory
meeting the required boundary condition with lower cost. This condition may be
analytica].lyrepreselnted by requiring the normal to the hyperplane,'h (tf),a.nd the per-
turbation at tf, 6x (tf) have the relation,

L 1 (B.1-3)
A4e) S (g 2O

A positive or zero scalar product. Notice the Ao has the possibility of being zero
(if the hyperplane is "vertical"). Otherwise, it may be normalized to -1.

If A (t) is chosen to satisfy the equation,

“A complete treatment of the ideas presented in this Appendix,together with more
information about optimal control theory and optimal flight trajectories, may be

found in the following Refs.: (55, 44,56, 47,19, 20, 21, 27, 54, 60, 60, 74,76, 78, 81, 86).
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cost
compound
of the
state
vector

6 x (t;) (possible perturbation
in the state at the

final time)
(normal to A(t,.)

hyperplane a target set
at the final tangent to hyperplane
time) ‘

x*(tf) (final state
of optimal
trajectory)

6x(tf)

(perturbation below
hyperplane impossible,
could be combined

with perturbation

above plane to

reduce cost and

meet boundary condition)

hyperplane projection

Any other component of the state vector

Fig B.1 Schematic Representation of the Minimum Principle
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,.
Y2 (B. 1-4)

1>

2 ==

Q/I‘V
[ )

then from Egs. (A.1-11), (B.1-2) and (B. 1-3),

T
(ko) Sxtep) = Mkes o tepy + & Ty RHYSIN

.
2 N (VSR *+ Mep Ftiep,ut YAty 2o

or (B.1-5)
& (&) t_(’é , %) ats é(mg(g (tg) ,8") atp 2 '.\.(nglﬁ’,!*)bt
Then by defining a Hamiltonian, H, as
?
Hid,a,n = 2 (t\E(!,!\ (B. 1-6)

and by choosing, H (X*(tf), u*(tf), K*(tf): 0 if Atf # 0, then one has the mini-

mum principle

H "ﬁta %, ?_‘\ Z N 15*1 5‘/ é\ (B.1-7)

Or that H evaluated along the optimal trajectory must be a minimum with respect
to the control. It is noted here that l(tf) must be normal (transversal) to any tar-
get set,or a perturbation that satisfied the boundary conditions to first order would
be below the hyperplane.

A particularly useful interpretation of this condition is in terms of a
Euclidian norm in an n-dimensional space. Notei(z,}i) can be considered an n-di-
mensional mapping of the m-dimensional control u. Then requiring that
H-= LT(t)__f_ (3(_*, u ) be a minimum with respect to u is equivalent to requiring the
control that gives the minimumi (5*, u) projection on L(t). See Fig. B.2.

To motivate the naming of the Hamiltonian note that the system equations

and the adjoint equations, Eqs. (B.1-1) and (B.1-4) may be written as

" 2
z ~ 33

(B. 1-8)
N Y
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which are Hamilton equations of classical mechanics.
Further to show that H is a constant for constant bounded control sets, note

fim

r

T

YA+ Atws A }(.‘.‘(hkﬂ-f(u“\\ (B.1-9)
At

I

?
’

woe (2YA

(b d

The first two terms cancel each other by use of Eqs. (B. 1-8) and the last term is
identically zero by application of the minimum principle unless the bounds on the

control set are functions of time.

A(t)

f(x*, u)
(not necessarily
continuous function of u)

Fig B.2 Geometric Interpretation of the Minimum Principle
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APPENDIX C

THE METHOD OF MATCHED ASYMPTOTIC EXPANSIONS

The method of matched asymptotic expansions is a powerful perturbation
technique of applied mathematics. Its strength lies less in its rigorous formulation,
which is in its infancy(3’ 5), and more in the host of problems it has successfully
handled(l’ 4,6,12,32,57, 61, 64, 66, 67, 70). A rather limited description of the tech-
nique will be presented that will suffice to describe the applications made of it in
this thesis. For an elaborate and enlightening treatment of the method the reader

is referred to Van Dyke(l).

C.1 A Straight Forward Perturbation Expansion

Given an ordinary differential equation in which a small parameter, €,

appears, for example:
% ,En_z\ + &£ ] (%) (C.1-1)

where both the independent variable, t, and the dependent variables, x are
of order one. Then a straight forward perturbation expansion for the solution of
this equation is produced by assuming that x can be represented as a power series
in €:
(1S3 (1] - (§3]
) = K lo+E% (1) + €4 gyt

a”m (C.1-2)
= 2 € X W

The new dependent variables, _}5&1; are then assumed to satisfy a larger set
of equations created by substituting the series, Eq. (C.1-2), into the original dif-

ferential equation, Eq. (C. 1-1),and equating terms multiplied by equal orders of €,
specifically:

EC“';‘(“ - £(2,6“’!'M\-\- é% (Zeni‘(n\\
(C.1-3)

Expanding the right hand terms in a Taylor series gives,
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t ]
£(I_(-"“\ -:I(f"(‘fé'x Qlu\
Y.
t‘ll\
\ )‘E (l\ * tt\ ITY) L ‘l\ T
‘\"i S‘;} (E'f * & x +u\\(£l§ x & x o V' 4
Tox (o)
%
(T} —_— N '3 () "
+£§('§_)+a) (€ 48K am )
= ,‘lﬂ
)‘ l\
i")x) l +&8x e Y& x " +E€°% .,....) A
X gln
(C. 1-4)
Equating equal orders of € yields
£° &u\ =}

(2

A +4 (2 )
S ML 3

[ 1)

nE ‘1) )__E A l0 )‘£
%< | % ™

4

+

\ X m“(o\"'
x‘.) ; JE)S -

(C.1-5)
IS )_.i \’! t
(1)) I gl

It is important to observe that only the lowest order equation is nonlinear
tions.

In fact their solution may be written explicity as

All

higher order equations are linear with time varying coefficients and forcing func-

t
‘n\ (I ‘ﬁ\
w2 e X4 % § (6, hry ot (C.1-6)
t.
where ®(t,t ) is the transition matrix for perturbations about the lowest
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n)

order solution and -}-l-gt) represents the forcing terms that appear in the nﬁ- order
perturbation equation. [t is seen hg;l)) depends on the solution to the lower order

equations. Explicity,

(n) (n\
tn-n\
b« b, ey, e 2 ) (C.1-7)
Also, it has been shown Eq. (A.1-8), that the transition matrix may be written in

terms of the solution to the lowest order differential equation as

()
D@. (t) ‘H !a\

o% (C.1-8)

ey

so if the lowest order nonlinear problem is explicity integrable,then Eq. (C. 1-6) is
the explicit solution for all higher order perturbations. The solution to order €

is then given by

N

. } n o

T (k) = Z € 2 (8 (C.1-9)
As D

It is important to observe that non-uniformities can occur in this straightforward
perturbation expansion. A classical example of such a non-uniformity is when €
multiplies one of the deriviatives in the differential equations, Eq. (C.1-1). The
order of the differential equations is then reduced by one and arbitary initial con-
ditions can no longer be met. Another expansion valid in the region where the
initial conditions are to be imposed must be sought. Other non-uniformities do not
manifest themselves in this simple fashion. They are usually associated with an
unbounded term in the differential equations that occurs for specific values of the
equation variables., Similar unbounded terms usually occur in the expansions for
the solutions, though not necessarily in the lowest order term. When such a non-
uniformity exists, the expansion is presumed invalid in the neighborhood of the non-
uniformity and another expansion, valid in this region, must be sought. Generally,
when no single expansion is validithrough the field of interest, the problem is
called a singular perturbation problem. The process of seeking another expansion
valid in the region of a non-uniformity is generally accomplished by a rescaling of
the variables to a variable more characteristic of the region of the non-uniformity.
This process will now be described.

C.2 Scaling of the Variable

It is important to observe that the form of a non-linear differential equation

in which a small parameter appears is in no sense permanent.
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Specifically, given a nonlinear differential equation with a small parameter

:_'f. - }s.l't.\ XY, (K, (C.2-1)

it is possible to transform this equation into another equation in terms of the new

variables, x 2 (tz) and t,

1%,

- baaves o
T

(C. 2-2)

by simply rescaling the variables. Let le and t; be related to xZj and t, by

ny
Ky o+ Cp = &7 gy
£, v o o= ™, (C. 2-3)

n, n
where € Jand € ' are arbitary powers of the small parameter €and c, c.

are arbitrary constants. Then if X, and t; are assumed to be of order one, the new

variables, x
n. n,
€ Jand € respectively. Eq. (C.2-2) lowest order approximation

2 and t, are presumed to describe length scales and time scales order

(M)
J/X (» i
—t = _‘(,h\ (C.2-4)

dte

is presumed to be valid first approximation to the system of differential equations,

n; n
Eq. (C.2-1) when le + cj is order € J andt + c is order € °.

It is apparent that a particular nonlinear system may have many such first
approximations, The approach taken here will be to systematically exhaust all
possible first approximations. An expansion will then only bepresumed valid in a

region in which the correct lowest order approximation has been used.

C.3 The Matching Principle

Given two forms of the same differential equation, for example,

i\

E\("'\ +£%\(".l\

(C.3-1)

~
]

o
-0-‘1’? :Pllk

o

"S- o

gr. (%) + “‘_5_,_(«.1.\
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n, n
. . t
where the two equations are related by a scaling € ) and € * of one or more

of the variables, Xj and t

%, +cs=£ Ko

3
n C.3-2)"
i, tc _éﬁh ( )

and two different straightforward perturbation expansions' for the two equations

m {m)

H
2'((.‘\ E’ «al (h\

]
™Ma

. N n (C.3-3
'}-t (ﬁ‘\ = Z E "_‘z (f;)

complete to order € M and € N respectively, it is possible that the expansions have
some common region of validity (see Ref. (3)}, an "overlap domain". Say, for
example, where
Wi /e
," i % CS -0 (& )

Ne /e (C.3-4
'k‘* .« =0 (& » )

If such a domain exists, then the two expansions must have the same algebraicform
in this domain. So, if the two expansions are written in the same variable x, and

t 1 then when

n: o/
Ky 2y =O(e SIE Y

] C. 3«4
g, rc =0 "ty (c- =4

the expansions should agree to each power in €. This is the form of the asymptotic

(4) that will generally be used here.

matching principle of Kaplan and Lagerstrom
Van Dyke(l) has expressed this principle in the following less intuitive but more
formal statement:

"The M-term first expansion of (the N-term second expansion)

= the N-term second expansion of (the M-term first expansion)"

Here, N and M are two integers either equal or different by one. By definition, the
M-term first expansion of (the N-term second expansion) is found by rewriting the

N-term second expansion in terms of the first expansion variables, expanding
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asymptotically for small €, and truncating the result to M terms. The N-term
second expansion of (the M-term first expansion) is similarly defined.

Symbolically, the matching principle will be indicated as:

- | 7
M \m:l =, Y’%\ X (C.3-5)
\

where for convenience the brackets and superscripts will normally be

dropped when only doing matching to lowest few orders.

C.4 A Composite Expansion

A composite expansion is defined as any series that reduces to the first
expansion when expanded asymptotically for small € in the first variables, and to
the second expansion when expanded asymptotically for small € in the second vari-
ables. The existence of such a composite expansion is seen to avoid the awkward
practical question of when to switch from one expansion to another when traversing
from one region to another. As the two expansions are assumed to have a common
region of validity, one method of forming a composite expansion is to add the two
expansions and subtract their common part. Specifically, if the two expansions,

M

correct to € and EN, are le and xZN respectively, and their common part is

determined by inspection, or as the M~term first expansion of (the N-term second
expansion), then a composite expansion valid to € M in region one and to eN in

region two is,

HIN " 1\ i o
%e =%, R, - ‘l'?fz] (C. 4-1)
or, N
MmN H N N H
Xe AT R - R z\_ﬁ.] (C.4-2)

C.5 An Expansion Procedure for Optimal Control Problems

The procedure described in the preceding sections for obtaining the solution
to a nonlinear problem in which a small parameter appears applies equally well to
the set of system and adjoint equations encountered in optimal control problems

(See Appendix B). Consider, for example, the dynamic system described by the

equation,

u) ¥ &%) (C.5-1)
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The associated Hamiltonian is

Ho= X (heeu) v£30%,u0)

and the adjoint equations are

Expanding both x and M in the following form

A= 2D eEm AT

(C.5-2)

(C.5-3)

(C.5-4)

Then substituting into Eq. (C.5-1) and Eq. (C.5-3) and equating equal coefficients

of € yields a familiar sequence for the system equations

. » (& o

& K= % ,u)

au,‘ ’i(\\‘ \%% ill\ 4 3(5“),4)
. = g®

But a slightly more complicated sequence for the adjoint equations

T T
N 0 { ¢
é“\*a)_mq.m = —2}!\ ( );“'ké)_}\&n\\ _g?s% (g‘\‘\&?:m*" \
- Em* ¢ ,*-(-\ - X“‘f s !Mo.\\o

:-(%%\ N

r
(é K"‘ mojewm (1)) Q) "
X }D!\w” e ) (N4 e em
3 3 3 T
-&(;—i l’l»*’ 52?{ *E)al“ am )fﬂ\) (Ea*ﬁ Z‘(‘\‘N" \

or
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T T {
v ;_‘___E\ ,‘(‘\)-\(6\ - 1} §°\ (C. 5-7)
393\’

The equivalent expression for the Hamiltonian is

1

H 2 ( _\_“\*‘ 5—2(‘\-\-\.\\‘-( -g (4“_(“' u \ 4 ?

L %4
el

(&ﬁ(‘?’ u\\ FRTYY
r

+23(xTu) +a;3% (€O Y 4w
=K ; (C. 5-8)
= )“T; o 3 T T
= Mt(eay t e (X E(‘_“‘)‘.‘\ + )_\lo) g_’% “")*‘53(:";‘2 ‘xn‘

<4 v

Notice that if the problem is to be calculated to order € that the control that mini-
mizes H to order € may be determined in terms of }_(O)' k(l), 3{_(0)and 5(1). So, in
principle the "€ optimal control" may be calculated. This is true to any order in€.
Unfortunately, the expressions even to order €are extremely complex.

For problems where only lowest order results are desired, the necessary
conditions may be easily produced by writing the Hamiltonian and adjoint equations
associated with a lowest order model of the system. This model is simply the low-
est order approximation to the dynamic equations. These equations may then be
treated as though they were exact, with the restriction, of course, that the results
will only be accurate to lowest order. This approach is consistently taken in
Chapter V, toprecludeoverbearing algebraic complexity.

Finally, multiple expansions can and must be matched, as a single optimal
trajectory normally traverses several regions of expansion validity. This has the
distasteful aspect of solving the two point boundary value problem associated with
the optimal trajectory with multiple matching conditions in between. Fortunately,

if one is willing to settle for general information about the trajectory short of
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detailed numerical results, the simplified dynamic systems often admit so few

optimal trajectories that a general description of the composite trajectory is possi-

ble, without the benefit of the detailed matching. The generation of these simple

descriptions is the primary objective of Chapter V.
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APPENDIX D

PLANETARY GRAVITATIONAL FIELD

D.1 The Gravitational Potential
The gravitational field of any planet may be expressed as the negative gradi-

ent of a potential, V, expressed in spherical harmonics as

= - MY
3 :'.'
(D.1-1)
fo Tae .
N= - ‘%:-: \.2 _l(f'.) Ta L(3sm L-i)]+--- ]

where G is the universal gravitational constant, M is the planetary mass,
r _is the equatorial radius, Iy is the second spherical harmonic coefficient, L. is
the latitude, and r is the radius vector in a planet centered spherical coordinate
system. Only the first two terms in the series have been retained. These are the
inverse r field associated with a spherically symmetric body and the second spheri-
cal harmonicywhich basically accounts for the planet's oblate mass attraction.

If the g vector is desired in a rotating coordinate system, a slightly differ-
ent potential must be used. This accounts for both the gravitational attraction and

the centripetal acceleration of a point rotating with the planet-fixed coordinate sys-

tem,
R ER (I ENTS

(D.1-2)

where Q is the planet's rotation rate.
These relations will suffice to define the gravitational field to the extent
that will be needed here. For an explanation of these expressions and a more elab-

orate representation of the gravitational field, the reader is referred to Refs. (41,

16, and 85).
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APPENDIXE

ATMOSPHERIC PROPERTIES

E. 1 X¥quation of State of the Gas

For relatively low density gases that compose most atmospheres, the equa-

tion of state may be written as

T

il ruy

P

(E.1-1)

where p is the pressure, p the density, T the temperature, R the gas con-

stant and M is the molecular weight of the well mixed gas.

E. 2 The Hydrostatic Equation

It one neglects the vertical component of the wind velocity, convervation of

mememtum in the g direction will give

)

¥ a-¢q
oh (E.1-2)
where h is presumed measured along g, and g is the gravitational acceler-

ation in the planets' rotating coordinate system. The density may be eliminated

from the hydrostatic equation by using Eq. (E.1-1).

| .

g
h

= 4|

» (E.1-3)

-
1)
\

o

Given a temperature distribution T = T(r), this differential equation may be solved
for p = p(h) and Eq. (E. 1-1) will specify p(h}.
Notice that the quantity,

< 4%
A

has units of inverse height. It is convenient to introduce it as an inverse atmos-

pheric scale height. With this substitution, Eq. (E. 1-3) is

.

“For a more adequate treatment of planetary atmospheres see Refs. (15,16 and 83).
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or (E.1-4)

? . S\“B‘“ A
° 1

This serves to define p, and thus the p, variation along the g vector for a real at-
mosphere. It only remains to describe g = g (r) to completely define the atmos-

pheric properties

P = )
QW

and (E.1-5)
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APPENDIX F

AERODYNAMIC FORCES AND HEATING

F.1 Hypersonic Lift-Drag Data

In hypersonic flight the lift and drag coefficients are not strongly Mach num-
dependent. The interrelation of CL and CD for high CL/CD vehicles be expressed

in terms of 2 Newtonian drag polar of the form,

Co = oo * Coulsndal

(F.1-1
C, = C\°$m ® cosu\smxl )

where o is the angle of attack and CD , CDL and CL are constants., At

o
small o, these relations simplify to

CD = c-b‘ 4 C‘L ‘“‘\

CL - C\.. "z

(F.1-2)
3/
or G T
Cop ™ (-b‘ + C'DL(— \
CL.
For vehicles with low 1L./D, relations of the following forms are valid:
Cop = Cp, *Cy o8 b
(F.1-3)

L ™ C omhn

where k is a constant with value near one.

F.2 Furee Stream EnergLFlux

The free stream energy flux, qo , of the gas flowing by the vehicle is,

- L 3
q, = T¢¥ (F. 2-1)

*Justification for the information that follows together with an adequate treatment of
hypersonic aerodynamics may be found in the following Refs. (22, 23, 31, 47, 49,
59, 62, 63, 95, 96).
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Only in free molecular flow does energy of this order of magnitude reach the vehi-
cle. In other flow regimes there are blocking effects that have been discussed. It
is still expected that p and v are the relevant parameters for expressing heat trans-

fer to the vehicle, In fact, impirical relation in terms of p and v to varying powers
are available.

F.3 Generalized Aerodynamic Effect
(

Ambrosio 62) has suggested that both heating and aerodynamic loading can

be expressed in the general form

(28
6= Ce (N (F.3-1)

where G is a generalized aerodynamic effect and CG is a dimensional con-
stant. The value of CG is a function of the vehicle geometry and the planetary at-
mosphere composition. The values of i and j are also functions of the atmospheric

composition. For comparison, it will be convenient to express the known values

for earth's atmosphere.

Generalized Effect: G i J %
LI} { A
Deceleration VAL LN 1.0 1.0 1.0
A %) "og
Stagnation Convec- “% 5 1.5 333
tive Heating Rate Kg EN ) ) )

Stagnation Radiation 4 L 4 N

Heat Rate 1.7 10. 6 . 160

where RN is the nose radius of the vehicle, KS and KR are constants,

Kg = Loy w08

(F.3-2)
Kg = 814310 84

Notice that a large nose radius reduces the convective heating rate, but
increases the radiation heating rate.
The maximum aerodynamic effect occurs when,
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dinCe +d g"'-\-J‘MM' Yoeo

or for constant CG when

) :
dlnwr - _51_ (F. 3-4)

dn g
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